搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BiOCl{001}表面原子与电子结构的第一性原理研究

李国旗 张小超 丁光月 樊彩梅 梁镇海 韩培德

引用本文:
Citation:

BiOCl{001}表面原子与电子结构的第一性原理研究

李国旗, 张小超, 丁光月, 樊彩梅, 梁镇海, 韩培德

Study on the atomic and electronic structures of BiOCl{001} surface using first principles

Li Guo-Qi, Zhang Xiao-Chao, Ding Guang-Yue, Fan Cai-Mei, Liang Zhen-Hai, Han Pei-De
PDF
导出引用
  • 基于密度泛函理论的第一性原理方法研究了BiOCl{001}的三种不同终端面({001}-1Cl, {001}-BiO 和{001}-2Cl)的表面弛豫、能带结构、电子态密度和表面能. 计算结果表明: {001}-1Cl, {001}-BiO和{001}-2Cl表面均发生明显弛豫, 而在双Cl原子层处的层间距变化较大, 但未出现振荡弛豫现象, 其中{001}-1Cl表面弛豫较小. 与体相BiOCl电子结构相比, BiOCl{001}面具有较窄的带隙宽度, 并呈现较强局域性:对于{001}-BiO表面, 其导带与价带均往低能方向发生较大移动, 并且在导带底部出现表面态; 而{001}-2Cl表面的表面态主要出现在价带顶; {001}-1Cl表面的带隙中则无表面态产生; 表面态的出现导致{001}-BiO面和{001}-2Cl面带隙明显减小. BiOCl{001}三种终端表面的表面能分析结果表明, {001}-1Cl表面的表面能最小(0.09206 J·m-2), 结构最稳定, 而{001}-BiO表面和{001}-2Cl表面的表面能分别为2.392和2.461 J·m-2. 理论预测{001}-BiO表面和{001}-2Cl表面具有较高的活性, 但在BiOCl晶体生长过程中不易暴露. 本文计算结果为实验获得BiOCl高活性面{001}给予了基础理论解释, 进一步为BiOCl新型光催化材料的应用研究提供理论指导.
    The surface relaxations, band structures, densities of states and surface energies of BiOCl{001} surfaces containing {001}-1Cl, {001}-BiO and {001}-2Cl are studied using first-principles based on density functional theory. The calculated results indicate that there exist obvious relaxations for the three types of {001} surfaces, especially for their double chlorine layers. The relaxation result of {001}-1Cl surface is the minimum one in the BiOCl{001} surfaces. Compared with the electronic structure of bulk BiOCl, BiOCl{001} surfaces exhibit the smaller band gap and stronger localized energy levels. Besides, both conduction and valence band of {001}-BiO shift towards the lower energy and there exist surface states at the bottom of conduction band. For {001}-2Cl, surface states are located at the top of valence band. The occurrences of these surface states can lead to the obvious reductions of band gaps for {001}-BiO and {001}-2Cl. Furthermore, the surface energy of BiOCl{001} is calculated and investigated. The analysis results show that surface energies of {001}-1Cl, {001}-BiO and {001}-2Cl are 0.09206 J·m-2, 2.392 J·m-2 and 2.461 J·m-2, respectively. Thus the {001}-1Cl possesses the minimum surface energy and the highest stability, while {001}-BiO and {001}-2Cl exhibit the higher reaction activities and are difficult to be exposed in the growth process of BiOCl crystal. Our obtained results provide the theoretical guidance for the further understanding of the facet-dependent photoreactivity of BiOCl, the fine manipulation of their photoreactivity, and the progress of actual application for BiOCl photocatalytic material.
    • 基金项目: 国家自然科学基金(批准号: 21176168)、山西省国际合作项目(批准号: 2012081017)和太原市科技项目(批准号: 120123)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21176168), the International Cooperation Project of Shanxi Province, China (Grant No. 2012081017), and the Science and Technology Project of Taiyuan, China (Grant No. 120123).
    [1]

    Deng Z T, Tang F Q, Muscat A J 2008 Nanotechnology 19 295705-1

    [2]

    Kusainova A M, Lightfoot P, Zhou W Z, Stefanovich S Y, Mosunov A V, Dolgikh V A 2001 Chem. Mater. 13 4731

    [3]

    Charkin D O, Berdonosv P S, Moisejev A M, Shagiakhmetov R R, Dolgikh V A, Lightfoot P 1999 J. Solid. State. Chem. 147 527

    [4]

    Geng J, Hou W H, Lv Y N, Zhu J J, Chen H Y 2005 Inorg. Chem. 44 8503

    [5]

    Cao S H, Guo C F, Lv Y, Guo Y J, Liu Q 2009 Nanotechnology 20 275702-1

    [6]

    Wu S J, Wang C, Cui Y F, Hao W C, Wang T M, Brault P 2011 Mater. Lett. 65 1344

    [7]

    Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D 2006 Appl. Catal. B: Environ. 68 125

    [8]

    Wu S J, Wang C, Cui Y F, Wang T M, Huang B B, Zhang X Y, Qin X Y, Brault P 2010 Mater. Lett. 64 115

    [9]

    Ye L Q, Deng K J, Xu F, Tian L H, Peng T Y, Zan L 2012 Phys. Chem. Chem. Phys. 14 82

    [10]

    Gao F D, Zeng D W, Huang Q W, Tian S Q, Xie C S 2012 Phys. Chem. Chem. Phys. 14 10572

    [11]

    Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J 2012 J. Am. Chem. Soc. 134 4294

    [12]

    Huang L, Yang J H, Wang X L, Han J F, Han H X, Li C 2013 Phys. Chem. Chem. Phys. 15 553

    [13]

    Xiang Q J, Yu J G 2011 Chin. J. Catal. 32 525

    [14]

    Pan J, Liu G, Lu G Q, Cheng H M 2011 Angew. Chem. Int. Ed. 50 2133

    [15]

    Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H 2011 J. Am. Chem. Soc. 133 6490

    [16]

    Yang H G, Liu G, Qiao S Z, Sun C H, Jin Y G, Smith S C, Zou J, Cheng H M, Lu G Q 2009 J. Am. Chem. Soc. 131 4078

    [17]

    Wei P Y, Yang Q L, Guo L 2009 Prog. Chem. 21 1734 (in Chinese) [魏平玉, 杨青林, 郭林2009化学进展 21 1734]

    [18]

    Ye L Q, Zan L, Tian L H, Peng T Y 2011 Chem. Commun. 47 6951

    [19]

    Wang C H, Zhang X T, Yuan B, Shao C L, Liu Y C 2012 Micro Nano Lett. 7 152

    [20]

    Jiang J, Zhao K, Xiao X Y, Zhang L Z 2012 J. Am. Chem. Soc. 134 4473

    [21]

    Zhang H J, Liu L, Zhou Z 2012 Rsc. Adv. 2 9224

    [22]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [25]

    Pulay P 1969 Mol. Phys. 17 197

    [26]

    Shanno D F, Phua K H 1978 Math. Program. 14 149

    [27]

    Bannister F A 1934 Nature 134 856

    [28]

    Huang W L, Zhu Q S 2008 Comput. Mater. Sci. 43 1101

    [29]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Comput. Mater. Sci. 61 180

    [30]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Physica B 407 4416

    [31]

    Stampfl C, van de Walle C G 1999 Phys. Rev. B 59 5521

    [32]

    Shen Y B, Zhou X, Xu M, Ding Y C, Duan M Y, Linghu R F, Zhu W J 2007 Acta Phys. Sin. 56 3440 (in Chinese) [沈益斌, 周勋, 徐明, 丁迎春, 段满益, 令狐荣锋, 祝文军 2007 物理学报 56 3440]

    [33]

    Zhang H J, Liu L, Zhou Z 2012 Phys. Chem. Chem. Phys. 14 1286

    [34]

    Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 物理学报 55 4208]

    [35]

    Ma J X, Jia Y, Liang E J, Wang X C, Wang F, Hu X 2003 Acta Phys. Sin. 52 3155 (in Chinese) [马健新, 贾瑜, 梁二军, 王晓春, 王飞, 胡行 2003 物理学报 52 3155]

    [36]

    Du Y J, Chang B K, Zhang J J, Li B, Wang X H 2012 Acta Phys. Sin. 61 067101 (in Chinese) [杜玉杰, 常本康, 张俊举, 李飙, 王晓晖 2012 物理学报 61 067101]

    [37]

    Lu H L, Xu M, Chen W, Ren J, Ding S J, Zhang W 2006 Acta Phys. Sin. 55 1374 (in Chinese) [卢红亮, 徐敏, 陈玮, 任杰, 丁士进, 张卫 2006 物理学报 55 1374]

    [38]

    Sambrano J R, Longo V M, Longo E, Taft C A 2007 J. Mol. Struct.: Theochem 813 49

    [39]

    Cui J, Liu W 2010 Physica B 405 4687

    [40]

    Zhou K B, Li Y D 2012 Angew. Chem. Int. Ed. 51 602

  • [1]

    Deng Z T, Tang F Q, Muscat A J 2008 Nanotechnology 19 295705-1

    [2]

    Kusainova A M, Lightfoot P, Zhou W Z, Stefanovich S Y, Mosunov A V, Dolgikh V A 2001 Chem. Mater. 13 4731

    [3]

    Charkin D O, Berdonosv P S, Moisejev A M, Shagiakhmetov R R, Dolgikh V A, Lightfoot P 1999 J. Solid. State. Chem. 147 527

    [4]

    Geng J, Hou W H, Lv Y N, Zhu J J, Chen H Y 2005 Inorg. Chem. 44 8503

    [5]

    Cao S H, Guo C F, Lv Y, Guo Y J, Liu Q 2009 Nanotechnology 20 275702-1

    [6]

    Wu S J, Wang C, Cui Y F, Hao W C, Wang T M, Brault P 2011 Mater. Lett. 65 1344

    [7]

    Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D 2006 Appl. Catal. B: Environ. 68 125

    [8]

    Wu S J, Wang C, Cui Y F, Wang T M, Huang B B, Zhang X Y, Qin X Y, Brault P 2010 Mater. Lett. 64 115

    [9]

    Ye L Q, Deng K J, Xu F, Tian L H, Peng T Y, Zan L 2012 Phys. Chem. Chem. Phys. 14 82

    [10]

    Gao F D, Zeng D W, Huang Q W, Tian S Q, Xie C S 2012 Phys. Chem. Chem. Phys. 14 10572

    [11]

    Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J 2012 J. Am. Chem. Soc. 134 4294

    [12]

    Huang L, Yang J H, Wang X L, Han J F, Han H X, Li C 2013 Phys. Chem. Chem. Phys. 15 553

    [13]

    Xiang Q J, Yu J G 2011 Chin. J. Catal. 32 525

    [14]

    Pan J, Liu G, Lu G Q, Cheng H M 2011 Angew. Chem. Int. Ed. 50 2133

    [15]

    Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H 2011 J. Am. Chem. Soc. 133 6490

    [16]

    Yang H G, Liu G, Qiao S Z, Sun C H, Jin Y G, Smith S C, Zou J, Cheng H M, Lu G Q 2009 J. Am. Chem. Soc. 131 4078

    [17]

    Wei P Y, Yang Q L, Guo L 2009 Prog. Chem. 21 1734 (in Chinese) [魏平玉, 杨青林, 郭林2009化学进展 21 1734]

    [18]

    Ye L Q, Zan L, Tian L H, Peng T Y 2011 Chem. Commun. 47 6951

    [19]

    Wang C H, Zhang X T, Yuan B, Shao C L, Liu Y C 2012 Micro Nano Lett. 7 152

    [20]

    Jiang J, Zhao K, Xiao X Y, Zhang L Z 2012 J. Am. Chem. Soc. 134 4473

    [21]

    Zhang H J, Liu L, Zhou Z 2012 Rsc. Adv. 2 9224

    [22]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [25]

    Pulay P 1969 Mol. Phys. 17 197

    [26]

    Shanno D F, Phua K H 1978 Math. Program. 14 149

    [27]

    Bannister F A 1934 Nature 134 856

    [28]

    Huang W L, Zhu Q S 2008 Comput. Mater. Sci. 43 1101

    [29]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Comput. Mater. Sci. 61 180

    [30]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Physica B 407 4416

    [31]

    Stampfl C, van de Walle C G 1999 Phys. Rev. B 59 5521

    [32]

    Shen Y B, Zhou X, Xu M, Ding Y C, Duan M Y, Linghu R F, Zhu W J 2007 Acta Phys. Sin. 56 3440 (in Chinese) [沈益斌, 周勋, 徐明, 丁迎春, 段满益, 令狐荣锋, 祝文军 2007 物理学报 56 3440]

    [33]

    Zhang H J, Liu L, Zhou Z 2012 Phys. Chem. Chem. Phys. 14 1286

    [34]

    Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 物理学报 55 4208]

    [35]

    Ma J X, Jia Y, Liang E J, Wang X C, Wang F, Hu X 2003 Acta Phys. Sin. 52 3155 (in Chinese) [马健新, 贾瑜, 梁二军, 王晓春, 王飞, 胡行 2003 物理学报 52 3155]

    [36]

    Du Y J, Chang B K, Zhang J J, Li B, Wang X H 2012 Acta Phys. Sin. 61 067101 (in Chinese) [杜玉杰, 常本康, 张俊举, 李飙, 王晓晖 2012 物理学报 61 067101]

    [37]

    Lu H L, Xu M, Chen W, Ren J, Ding S J, Zhang W 2006 Acta Phys. Sin. 55 1374 (in Chinese) [卢红亮, 徐敏, 陈玮, 任杰, 丁士进, 张卫 2006 物理学报 55 1374]

    [38]

    Sambrano J R, Longo V M, Longo E, Taft C A 2007 J. Mol. Struct.: Theochem 813 49

    [39]

    Cui J, Liu W 2010 Physica B 405 4687

    [40]

    Zhou K B, Li Y D 2012 Angew. Chem. Int. Ed. 51 602

  • [1] 莫秋燕, 张颂, 荆涛, 张泓筠, 李先绪, 吴家隐. CuSe表面修饰的第一性原理研究. 物理学报, 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [2] 陈璐, 李烨飞, 郑巧玲, 刘庆坤, 高义民, 李博, 周长猛. B2-和B19'-NiTi表面原子弛豫、表面能、电子结构及性能的理论研究. 物理学报, 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [3] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [4] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究. 物理学报, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [5] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究. 物理学报, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [6] 张杨, 黄燕, 陈效双, 陆卫. InSb(110)表面S,O原子吸附的第一性原理研究. 物理学报, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [7] 肖红星, 龙冲生. UO2 晶体中低密勒指数晶面表面能的分子动力学模拟. 物理学报, 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [8] 梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳. 表面悬挂键导致硅纳米线掺杂失效机理的第一性原理研究. 物理学报, 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [9] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究. 物理学报, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [10] 舒瑜, 张研, 张建民. Cu 表面性质的第一性原理分析. 物理学报, 2012, 61(1): 016108. doi: 10.7498/aps.61.016108
    [11] 王博, 张建民, 路彦冬, 甘秀英, 殷保祥, 徐可为. fcc金属表面能的各向异性分析及表面偏析的预测. 物理学报, 2011, 60(1): 016601. doi: 10.7498/aps.60.016601
    [12] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [13] 胡国进, 欧阳楚英. 表面效应对锂离子电池正极材料LiMn2O4性能的影响. 物理学报, 2010, 59(8): 5863-5869. doi: 10.7498/aps.59.5863
    [14] 薛伟, 解国新, 王权, 张淼, 郑蓓蓉. 几种微构件材料的表面能及纳观黏附行为研究. 物理学报, 2009, 58(4): 2518-2522. doi: 10.7498/aps.58.2518
    [15] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [16] 黄 晋, 孙其诚. 一维液态泡沫渗流实验研究及表面能和粘性耗散分析. 物理学报, 2007, 56(10): 6124-6131. doi: 10.7498/aps.56.6124
    [17] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究. 物理学报, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
    [18] 郑瑞伦, 陶 冶. 形状和原子数对纳米晶表面能的影响. 物理学报, 2006, 55(4): 1942-1946. doi: 10.7498/aps.55.1942
    [19] 张建民, 徐可为, 马 飞. 用改进嵌入原子法计算Cu晶体的表面能. 物理学报, 2003, 52(8): 1993-1999. doi: 10.7498/aps.52.1993
    [20] 刘红. 双轴向列相液晶的表面能. 物理学报, 2002, 51(12): 2786-2792. doi: 10.7498/aps.51.2786
计量
  • 文章访问数:  5900
  • PDF下载量:  960
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-15
  • 修回日期:  2013-03-03
  • 刊出日期:  2013-06-05

/

返回文章
返回