搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CL20-TNT共晶高温热解的ReaxFF/lg反应力场分子动力学模拟

刘海 李启楷 何远航

引用本文:
Citation:

CL20-TNT共晶高温热解的ReaxFF/lg反应力场分子动力学模拟

刘海, 李启楷, 何远航

Pyrolysis of CL20-TNT cocrystal from ReaxFF/lg reactive molecular dynamics simulations

Liu Hai, Li Qi-Kai, He Yuan-Hang
PDF
导出引用
  • ReaxFF/lg势函数是在ReaxFF的基础上增加了对范德华引力的描述, 因此可以更好地用于描述晶体密度和结构, 而含能材料密度很大程度上影响着爆轰的宏观性质(如爆速、反应区宽度、能量输出结构等). 本文采用ReaxFF/lg反应力场分析了高温条件下凝聚相CL20-TNT共晶的初始分解情况, 并通过简单的指数函数拟合势能演化曲线获得了平衡和诱导期以及整体反应时间, 随后通过反应速率方程得到了共晶热解的活化能Ea (185.052 kJ/mol). CL20-TNT共晶热解过程中CL20分子均在TNT之前分解完毕, 并且随着温度的升高, TNT的分解速率明显加快, 温度越高二者完全分解所需的时间越接近. 有限时间步长下的产物识别分析显示主要产物为NO2, NO, CO2, N2, H2O, HON, HNO3. NO2是C–NO2和N–NO2键均裂共同贡献的结果, 其产量快速地增加, 达到峰值后开始减少, 此过程伴随着NO2参与其他反应使得NO2中的N原子进入到其他的含N 分子中. 次要产物主要为CO, N2O, N2O5, CHO. N2O具有很强的氧化能力, 使其分布有着剧烈的波动特征.
    ReaxFF/lg reactive force field is the extention of ReaxFF by adding a van der Waals attraction term. It can be used to well describe density and structure of crystal, moreover, the macroscopic property of detonation is significantly influenced by the density of energetic material. We report on the initial thermal decomposition of condensed phase CL20-TNT cocrystal under high temperature here. The time evolution curve of the potential energy can be described reasonably well by a single exponential function from which we obtain the initial equilibration and induction time, overall characteristic time of pyrolysis. Afterward, we also obtain the activation energy Ea (185.052 kJ/mol) from these simulations. All the CL20 molecules are completed before TNT decomposition in our simulations. And as the temperature rises, the TNT decomposition rate is significantly accelerated. The higher the temperature at which complete decomposition occurs, the closer to each other the times needed for CL20 and TNT to be completely decomposed will be. Product identification analysis with the limited time steps shows that the main products are NO2, NO, CO2, N2, H2O, HON, HNO3. C–NO2 and N–NO2 bond homolysis jointly contribute to the results of the NO2. The NO2 yield rapid increases to the peak and then decreases subsequently. This process is accompanied with NO2 participating in other reactions so that the N atom of NO2 enters into the other N-containing molecule. Secondary products are mainly CO, N2O, N2O5, CHO. N2O has a strong oxidation ability, so that the distribution has a dramatic fluctuation characteristics.
    [1]

    Ordzhonikidze O, Pivkina A, Frolov Y, Muravyev N, Monogarov K 2011 J. Therm. Anal. Calorim. 105 529

    [2]

    Bolton O, Matzger A J 2011 Angew. Chem. Int. Ed. 50 8960

    [3]

    Yang Z W, Zhang Y L, Li H Z, Zhou X Q, Nie F D, Li J S, Huang H 2012 Chin. J. Energ. Mater. 20 674 (in Chinese) [杨宗伟, 张艳丽, 李洪珍, 周小清, 聂福德, 李金山, 黄辉 2012 含能材料 20 674]

    [4]

    Yang Z W, Huang H, Li H Z, Zhou X Q, Nie F D, Li J S 2012 Chin. J. Energ. Mater. 20 256 (in Chinese) [杨宗伟, 黄辉, 李洪珍, 周小清, 聂福德, 李金山 2012 含能材料 20 256]

    [5]

    van Duin A C T, Zeiri Y, Dubnikova F, Kosloff R, Goddard W A 2005 J. Am. Chem. Soc. 127 11053

    [6]

    Dubnikova F, Kosloff R, Almog J, Zeiri Y, Boese R, Itzhaky H, Alt A, Keinan E 2005 J. Am. Chem. Soc. 127 1146

    [7]

    Lee J S, Jaw K S 2006 J. Therm. Anal. Calorim. 85 463

    [8]

    Olexandr I, Gorb L, Qasim M, Leszczynski J 2008 J. Phys. Chem. B 112 11005

    [9]

    Brill T B, James K J 1993 J. Phys. Chem. 97 8759

    [10]

    Fields E K, Meyerson S 1967 J. Am. Chem. Soc. 89 3224

    [11]

    Hand C W, Merritt C, Dipietro C 1977 J. Org. Chem. 42 841

    [12]

    Cohen R, Zeiri Y, Wurzberg E, Kosloff R 2007 J. Phys. Chem. A 111 11074

    [13]

    Zhou T T, Zybin S V, Liu Y, Huang F L, Goddard W A 2012 J. Appl. Phys. 111 124904

    [14]

    Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 物理学报 61 246501]

    [15]

    Jenkins T F, Hewitt A D, Grant C L, Thiboutot S, Ampleman G, Walsh M E, Ranney T A, Ramsey C A, Palazzo A J, Pennington J C 2006 J. C. Chemosphere 63 1280

    [16]

    Turcotte R, Vachon M, Kwok Q S M, Wang R P, Jones D E G 2005 Thermochim. Acta 433 105

    [17]

    Plimpton S 1995 J. Comp. Phys. 117 1

    [18]

    Liu L C, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016

    [19]

    van Duin A C T, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396

    [20]

    Strachan A, Kober E M, van Duin A C T, Oxgaard J, Goddard W A 2005 J. Chem. Phys. 122 054502

    [21]

    Ten K A, Aulchenko V M, Lukjanchikov L A, Pruuel E R, Shekhtman L I, Tolochko B P, Zhogin I L, Zhulanov V V 2009 Nucl. Instrum. Methods Phys. Res. A 603 102

    [22]

    Viecelli J A, Glosli J N 2002 J. Chem. Phys. 117 11352

    [23]

    Shaw M S, Johnson J D 1987 J. Appl. Phys. 62 2080

    [24]

    Viecelli J A, Ree F H 1999 J. Appl. Phys. 86 237

    [25]

    Ree R H, Winter N W, Glosli J N 1998 36th European High Pressure Research Group Meeting on Molecular and Low Dimensional Systems under Pressure Catalina, Italy September 7-11, 1998 p165

    [26]

    Chevrot G, Sollier A, Pineau N 2012 J. Chem. Phys. 136 084506

    [27]

    Thiel M V, Ree F H 1987 J. Appl. Phys. 62 1761

  • [1]

    Ordzhonikidze O, Pivkina A, Frolov Y, Muravyev N, Monogarov K 2011 J. Therm. Anal. Calorim. 105 529

    [2]

    Bolton O, Matzger A J 2011 Angew. Chem. Int. Ed. 50 8960

    [3]

    Yang Z W, Zhang Y L, Li H Z, Zhou X Q, Nie F D, Li J S, Huang H 2012 Chin. J. Energ. Mater. 20 674 (in Chinese) [杨宗伟, 张艳丽, 李洪珍, 周小清, 聂福德, 李金山, 黄辉 2012 含能材料 20 674]

    [4]

    Yang Z W, Huang H, Li H Z, Zhou X Q, Nie F D, Li J S 2012 Chin. J. Energ. Mater. 20 256 (in Chinese) [杨宗伟, 黄辉, 李洪珍, 周小清, 聂福德, 李金山 2012 含能材料 20 256]

    [5]

    van Duin A C T, Zeiri Y, Dubnikova F, Kosloff R, Goddard W A 2005 J. Am. Chem. Soc. 127 11053

    [6]

    Dubnikova F, Kosloff R, Almog J, Zeiri Y, Boese R, Itzhaky H, Alt A, Keinan E 2005 J. Am. Chem. Soc. 127 1146

    [7]

    Lee J S, Jaw K S 2006 J. Therm. Anal. Calorim. 85 463

    [8]

    Olexandr I, Gorb L, Qasim M, Leszczynski J 2008 J. Phys. Chem. B 112 11005

    [9]

    Brill T B, James K J 1993 J. Phys. Chem. 97 8759

    [10]

    Fields E K, Meyerson S 1967 J. Am. Chem. Soc. 89 3224

    [11]

    Hand C W, Merritt C, Dipietro C 1977 J. Org. Chem. 42 841

    [12]

    Cohen R, Zeiri Y, Wurzberg E, Kosloff R 2007 J. Phys. Chem. A 111 11074

    [13]

    Zhou T T, Zybin S V, Liu Y, Huang F L, Goddard W A 2012 J. Appl. Phys. 111 124904

    [14]

    Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 物理学报 61 246501]

    [15]

    Jenkins T F, Hewitt A D, Grant C L, Thiboutot S, Ampleman G, Walsh M E, Ranney T A, Ramsey C A, Palazzo A J, Pennington J C 2006 J. C. Chemosphere 63 1280

    [16]

    Turcotte R, Vachon M, Kwok Q S M, Wang R P, Jones D E G 2005 Thermochim. Acta 433 105

    [17]

    Plimpton S 1995 J. Comp. Phys. 117 1

    [18]

    Liu L C, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016

    [19]

    van Duin A C T, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396

    [20]

    Strachan A, Kober E M, van Duin A C T, Oxgaard J, Goddard W A 2005 J. Chem. Phys. 122 054502

    [21]

    Ten K A, Aulchenko V M, Lukjanchikov L A, Pruuel E R, Shekhtman L I, Tolochko B P, Zhogin I L, Zhulanov V V 2009 Nucl. Instrum. Methods Phys. Res. A 603 102

    [22]

    Viecelli J A, Glosli J N 2002 J. Chem. Phys. 117 11352

    [23]

    Shaw M S, Johnson J D 1987 J. Appl. Phys. 62 2080

    [24]

    Viecelli J A, Ree F H 1999 J. Appl. Phys. 86 237

    [25]

    Ree R H, Winter N W, Glosli J N 1998 36th European High Pressure Research Group Meeting on Molecular and Low Dimensional Systems under Pressure Catalina, Italy September 7-11, 1998 p165

    [26]

    Chevrot G, Sollier A, Pineau N 2012 J. Chem. Phys. 136 084506

    [27]

    Thiel M V, Ree F H 1987 J. Appl. Phys. 62 1761

  • [1] 周明锦, 侯氢, 潘荣剑, 吴璐, 付宝勤. 锆铌合金的特殊准随机结构模型的分子动力学研究. 物理学报, 2021, 70(3): 033103. doi: 10.7498/aps.70.20201407
    [2] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, 69(7): 070201. doi: 10.7498/aps.69.20191591
    [3] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [4] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [5] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [6] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [7] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应. 物理学报, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [8] 范航, 聂福德, 龙瑶, 陈军. 钝感高能炸药三氨基三硝基苯高温高压下热力学性质的分子动力学模拟研究. 物理学报, 2016, 65(6): 066201. doi: 10.7498/aps.65.066201
    [9] 张金平, 张洋洋, 李慧, 高景霞, 程新路. 纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟. 物理学报, 2014, 63(8): 086401. doi: 10.7498/aps.63.086401
    [10] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [11] 周耐根, 胡秋发, 许文祥, 李克, 周浪. 硅熔化特性的分子动力学模拟–-不同势函数的对比研究. 物理学报, 2013, 62(14): 146401. doi: 10.7498/aps.62.146401
    [12] 汪志刚, 黄娆, 文玉华. Au-Pd共晶纳米粒子熔化行为的分子动力学研究. 物理学报, 2012, 61(16): 166102. doi: 10.7498/aps.61.166102
    [13] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [14] 王伟, 张凯旺, 孟利军, 李中秋, 左学云, 钟建新. 多壁碳纳米管外壁高温蒸发的分子动力学模拟. 物理学报, 2010, 59(4): 2672-2678. doi: 10.7498/aps.59.2672
    [15] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究. 物理学报, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [16] 刘建廷, 段海明. 不同势下铱团簇结构和熔化行为的分子动力学模拟. 物理学报, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [17] 周耐根, 周 浪. 采用纳米晶柱阵列衬底抑制失配位错形成的分子动力学模拟研究. 物理学报, 2008, 57(5): 3064-3070. doi: 10.7498/aps.57.3064
    [18] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [19] 丁 佩, 晁明举, 梁二军, 郭新勇, 杜祖亮. CNx纳米管的制备、结构观察及低场致电子发射性能研究. 物理学报, 2004, 53(8): 2786-2791. doi: 10.7498/aps.53.2786
    [20] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
计量
  • 文章访问数:  7184
  • PDF下载量:  1721
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-25
  • 修回日期:  2013-07-19
  • 刊出日期:  2013-10-05

/

返回文章
返回