搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B掺杂ZnO透明导电薄膜的实验及理论研究

王延峰 张晓丹 黄茜 杨富 孟旭东 宋庆功 赵颖

引用本文:
Citation:

B掺杂ZnO透明导电薄膜的实验及理论研究

王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖

Experimental and theoretical investigation of transparent and conductive B doped ZnO film

Wang Yan-Feng, Zhang Xiao-Dan, Huang Qian, Yang Fu, Meng Xu-Dong, Song Qing-Gong, Zhao Ying
PDF
导出引用
  • 采用脉冲直流磁控溅射技术与基于密度泛函理论的平面波赝势方法对B掺杂ZnO (BZO)薄膜进行了研究. 以B2O3:ZnO陶瓷靶为溅射靶材,制备了低电阻率、可见和近红外光区高透过率的BZO薄膜. 系统地研究了衬底温度对BZO薄膜的结构、光电特性的影响. 结果表明:适当的增加衬底温度可以促进BZO薄膜结晶质量改善,晶粒尺寸增加,迁移率增大,电阻率降低. 在200 ℃时制备了电阻率为7.03×10-4 Ω·cm,400–1100 nm平均透过率为89%的BZO薄膜. 理论模拟结果表明:在BZO薄膜中,以替位方式掺入的B (BZn)的形成能最低,B主要以替位形式掺入ZnO,其次分别为八面体间隙(BIO)和四面体间隙(BIT)的掺杂方式. B 掺入后,费米能级穿过导带,材料表现出n型半导体特性,光学带隙展宽,导电电子主要来源于B 2p,O 2p及Zn 4s电子轨道.
    The properties of boron doped ZnO (BZO) films are investigated by the pulsed DC magnetron sputtering technique and the plane wave pseudo-potential method based on the density-functional theory. Highly conductive and transparent BZO thin films are prepared using a B2O3:ZnO ceramic target. The effects of the substrate temperature on the structureand electrical and optical properties are systematically investigated. The results show that by increasing the substrate temperature appropriately, the crystallinity, grain size, and carrier mobility of BZO film are improved, and the resistivity is reduced. BZO films of low resistivity (7.03×10-4 Ω·cm) and high transmittance (89%) from 400–1100 nm are achieved at an optimal substrate temperature of 200 ℃. The theoretical results show that B is doped in ZnO mainly in three forms, i.e., in the forms of substitutional BZn atoms, octahedral interstitial site (BIO), and tetrahedral interstitial site (BIT). Among them the formation energy of BZn defect is lowest, and its concentration may be the highest in all the sample concentrations. After incorporation of B, the Fermi level goes through the conduction band. The sample shows a typical n-type metallic characteristic and the optical band gap increases significantly. The carriers originate from the orbits of B 2p, O 2p and Zn 4s.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CBA00706,2011CBA00707)、国家高技术研究发展计划(批准号:2013AA050302)、天津市科技支撑项目(批准号:12ZCZDGX03600)、天津市重大科技支撑计划(批准号:11TXSYGX22100)和高等学校博士学科点专项科研基金(批准号:20120031110039)资助的课题.
    • Funds: Project supported by the National Basical Research Program of China (Grant Nos. 2011CBA00706, 2011CBA00707), the National High Technology Research and Development Program of China (Grant No. 2013AA050302), the Tianjin Science and Technology Supported Project, China (Grant No. 12ZCZDGX03600), the Major Science and Technology Supported Project of Tianjin, China (Grant No. 11TXSYGX22100), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20120031110039).
    [1]

    Minami T 2005 Semicond. Sci. Technol. 20 S35

    [2]

    Hpkes J, Owen J I, Pust S E, Bunte E 2012 Chem. Phys. Chem. 13 66

    [3]

    Wang Y F, Zhang X D, Bai L S, Huang Q, Wei C C, Zhao Y 2012 Appl. Phys. Lett. 100 263508

    [4]

    Selvan J A A, Delahoy A E, Guo S Y, Li Y M 2006 Sol. Energy Mater. Sol. Cells 90 3371

    [5]

    Fäy S, Feitknecht L, Schlchter R, Kroll U, Vallat-Sauvain E, Shah A 2006 Sol. Energy Mater. Sol. Cells 90 2960

    [6]

    Faÿ S, Steinhauser J, Nicolay S, Ballif C 2010 Thin Solid Films 518 2961

    [7]

    WangY, Gu Y S, Peng S, Ding W Y, H L Wang, Chai W P 2011 Appl. Surf. Sci. 257 8044

    [8]

    Palacios P, Sánchez K, Wahnón P 2009 Thin Solid Films 517 2448

    [9]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 物理学报 59 4925]

    [10]

    Liu J J 2010 Acta Phys. Sin. 59 6446 (in Chinese) [刘建军 2010 物理学报 59 6446]

    [11]

    Özgr , Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, AVrutin V, Cho S J, Morkoç H 2005 J. Appl. Phys. 98 041301

    [12]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [13]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [14]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [15]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [16]

    Cao F, Wang Y D, Li L, Guo B J, An Y P 2009 Scripta Mater. 61 231

    [17]

    Lin S S, Huang J L, Šajgalik P 2005 Surf. Coat. Tech. 190 39

    [18]

    Singh S, Srinivasa R S, Major S S 2007 Thin Solid Films 515 8718

    [19]

    Kim K H, Park K C, Ma D Y 1997 J. Appl. Phys. 81 7764

    [20]

    Pei Z L, Sun C, Tan M H, Xiao J Q, Guan D H, Huang R F, Wen L S 2001 J. Appl. Phys. 90 3432

    [21]

    Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801 (in Chinese) [王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹 2012 物理学报 61 137801]

    [22]

    Wang F G, Lv M S, Pang Z Y, Yang T L, Dai Y, Han S H 2008 Appl. Surf. Sci. 254 6983

    [23]

    Li H L, Zhang Z, L Y B, Huang J Z, Zhang Y, Liu R X 2013 Acta Phys. Sin. 62 047101 (in Chinese) [李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜 2013 物理学报 62 047101]

    [24]

    Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yun J N 2009 Acta Opt. Sin. 29 1025 (in Chinese) [张富春, 张志勇, 张威虎, 阎军峰, 贠江妮 2009 光学学报 29 1025]

  • [1]

    Minami T 2005 Semicond. Sci. Technol. 20 S35

    [2]

    Hpkes J, Owen J I, Pust S E, Bunte E 2012 Chem. Phys. Chem. 13 66

    [3]

    Wang Y F, Zhang X D, Bai L S, Huang Q, Wei C C, Zhao Y 2012 Appl. Phys. Lett. 100 263508

    [4]

    Selvan J A A, Delahoy A E, Guo S Y, Li Y M 2006 Sol. Energy Mater. Sol. Cells 90 3371

    [5]

    Fäy S, Feitknecht L, Schlchter R, Kroll U, Vallat-Sauvain E, Shah A 2006 Sol. Energy Mater. Sol. Cells 90 2960

    [6]

    Faÿ S, Steinhauser J, Nicolay S, Ballif C 2010 Thin Solid Films 518 2961

    [7]

    WangY, Gu Y S, Peng S, Ding W Y, H L Wang, Chai W P 2011 Appl. Surf. Sci. 257 8044

    [8]

    Palacios P, Sánchez K, Wahnón P 2009 Thin Solid Films 517 2448

    [9]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 物理学报 59 4925]

    [10]

    Liu J J 2010 Acta Phys. Sin. 59 6446 (in Chinese) [刘建军 2010 物理学报 59 6446]

    [11]

    Özgr , Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, AVrutin V, Cho S J, Morkoç H 2005 J. Appl. Phys. 98 041301

    [12]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [13]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [14]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [15]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [16]

    Cao F, Wang Y D, Li L, Guo B J, An Y P 2009 Scripta Mater. 61 231

    [17]

    Lin S S, Huang J L, Šajgalik P 2005 Surf. Coat. Tech. 190 39

    [18]

    Singh S, Srinivasa R S, Major S S 2007 Thin Solid Films 515 8718

    [19]

    Kim K H, Park K C, Ma D Y 1997 J. Appl. Phys. 81 7764

    [20]

    Pei Z L, Sun C, Tan M H, Xiao J Q, Guan D H, Huang R F, Wen L S 2001 J. Appl. Phys. 90 3432

    [21]

    Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801 (in Chinese) [王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹 2012 物理学报 61 137801]

    [22]

    Wang F G, Lv M S, Pang Z Y, Yang T L, Dai Y, Han S H 2008 Appl. Surf. Sci. 254 6983

    [23]

    Li H L, Zhang Z, L Y B, Huang J Z, Zhang Y, Liu R X 2013 Acta Phys. Sin. 62 047101 (in Chinese) [李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜 2013 物理学报 62 047101]

    [24]

    Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yun J N 2009 Acta Opt. Sin. 29 1025 (in Chinese) [张富春, 张志勇, 张威虎, 阎军峰, 贠江妮 2009 光学学报 29 1025]

  • [1] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [2] 王延峰, 谢希成, 刘晓洁, 韩冰, 武晗晗, 连宁宁, 杨富, 宋庆功, 裴海林, 李俊杰. F, Al共掺杂ZnO透明导电薄膜的制备及掺杂机理研究. 物理学报, 2020, 69(19): 197801. doi: 10.7498/aps.69.20200580
    [3] 赵其琛, 郝瑞亭, 刘思佳, 刘欣星, 常发冉, 杨敏, 陆熠磊, 王书荣. 单靶溅射制备铜锌锡硫薄膜及原位退火研究. 物理学报, 2017, 66(22): 226801. doi: 10.7498/aps.66.226801
    [4] 耿超, 郑义, 张永哲, 严辉. 硅薄膜太阳电池表面纳米线阵列光学设计. 物理学报, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [5] 王延峰, 孟旭东, 郑伟, 宋庆功, 翟昌鑫, 郭兵, 张越, 杨富, 南景宇. V掺杂ZnO透明导电薄膜研究. 物理学报, 2016, 65(8): 087802. doi: 10.7498/aps.65.087802
    [6] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究. 物理学报, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [7] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化. 物理学报, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [8] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [9] 王延峰, 张晓丹, 黄茜, 刘阳, 魏长春, 赵颖. 室温制备低电阻率高透过率H, W共掺杂ZnO薄膜. 物理学报, 2013, 62(1): 017803. doi: 10.7498/aps.62.017803
    [10] 王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹. W掺杂ZnO透明导电薄膜的理论及实验研究. 物理学报, 2012, 61(13): 137801. doi: 10.7498/aps.61.137801
    [11] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征. 物理学报, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [12] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [13] 丁万昱, 徐军, 陆文琪, 邓新绿, 董闯. 微波ECR磁控溅射制备SiNx薄膜的XPS结构研究. 物理学报, 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [14] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究. 物理学报, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [15] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [16] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [17] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [18] 王宝义, 张仁刚, 张 辉, 万冬云, 魏 龙. ZnO退火条件对硫化法制备的ZnS薄膜特性的影响. 物理学报, 2005, 54(4): 1874-1878. doi: 10.7498/aps.54.1874
    [19] 张仁刚, 王宝义, 张 辉, 马创新, 魏 龙. 不同参数溅射的ZnO薄膜硫化后的特性. 物理学报, 2005, 54(5): 2389-2393. doi: 10.7498/aps.54.2389
    [20] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
计量
  • 文章访问数:  5096
  • PDF下载量:  1242
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-29
  • 修回日期:  2013-09-28
  • 刊出日期:  2013-12-05

/

返回文章
返回