搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阻变存储器复合材料界面及电极性质研究

杨金 周茂秀 徐太龙 代月花 汪家余 罗京 许会芳 蒋先伟 陈军宁

引用本文:
Citation:

阻变存储器复合材料界面及电极性质研究

杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁

Composite interfaces and electrode properties of resistive random access memory devices

Yang Jin, Zhou Mao-Xiu, Xu Tai-Long, Dai Yue-Hua, Wang Jia-Yu, Luo Jing, Xu Hui-Fang, Jiang Xian-Wei, Chen Jun-Ning
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理对比研究了Cu(111)/HfO2(001),Cu(111)/HfO2(010),Cu(111)/HfO2(100)三种复合材料界面模型的失配率、界面束缚能、电荷密度、电子局域函数以及差分电荷密度. 计算结果表明:Cu(111)/HfO2(010)失配率最小,界面束缚能最大,界面体系相对最稳定;对比电荷密度及电子局域函数图显示,只有HfO2(010)方向形成的复合材料体系出现了垂直Cu电极方向完整连通的电子通道,表明电子在此方向上具有局域性、连通性,与阻变存储器(RRAM)器件导通方向一致;差分电荷密度图显示,Cu(111)/HfO2(010)复合材料体系界面处存在电荷密度分布重叠的现象,界面处有电子的相互转移、成键的存在;进一步计算了Cu(111)/HfO2(010)体系距离界面不同位置的间隙Cu原子形成能,表明越靠近界面Cu原子越容易进入HfO2 体内,在外加电压下易发生电化学反应,从而导致Cu导电细丝的形成与断裂. 研究结果可为RRAM存储器的制备及性能的提高提供理论指导和设计工具.
    For the three kinds of composite materials, i.e., Cu(111)/HfO2(001), Cu(111)/HfO2(010) and Cu(111)/HfO2(100), the first-principles method based on the density functional theory is adopted to calculate their rates of mismatching of interface model, interface adhesion energies, the electric charge densities, the electron localization functions, and the charge density differences separately. The results indicate that the rate of mismatching of the Cu(111)/HfO2(010) interface model is lowest and its interface adhesion energy is higher than the others’, which means that the Cu(111)/HfO2(010) is most stable. From the analyses of charge densities and electron localization functions of the three interfaces, it can be found that only the Cu(111)/HfO2(010) interface is able to form the connective electronic channel along the vertical direction of the Cu electrode. This indicates that electrons possess the localizabilty and connectivity along the HfO2(010) direction, which corresponds to the switching-on direction of the resistive random access memory (RRAM) device. The charge density difference analysis reveals that the charge density distributions overlap, the electrons transfer mutually and bond at the interface of the Cu(111)/HfO2(010). In addition, based on the model of Cu (111)/HfO2 (010) interface, the formation energies of the interstitial Cu at different positions are also calculated. The results show that the closer to the interface the Cu atom, the more easily it migrates into HfO2. This indicates that the electrochemical reaction takes place more easily under the applied voltage, which results in the formation and rupture of Cu conductive filaments. All the above findings will provide a theoretical guidance for improving the performances of RRAM devices.
    • 基金项目: 国家自然科学基金(批准号:61376106)、国家核高基重大科技专项子课题(批准号:2009ZX01031-001-004,2010ZX01030-001-001-004)和安徽大学青年科学研究基金(批准号:KJQN1011)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61376106), the Major Projects of the Ministry of Science and Technology of China (Grant Nos. 2009ZX01031-001-004, 2010ZX01030-001-001-004), and the Young Scientists Foundation of Anhui University, China (Grant No. KJQN1011).
    [1]

    Celano U, Chen Y Y, Wouters D J, Groeseneken G, Jurczak M, Vandervorst W 2013 Appl. Phys. Lett. 102 121602

    [2]

    Lian W T, Long S B, L H B, Liu Q, Li Y T, Zhang S, Wang Y, Huo Z L, Dai Y H, Chen J N, Liu M 2011 Chin. Sci. Bull. 56 461

    [3]

    Yalon E, Cohen S, Gavrilov A, Ritter D 2012 Nanotechnology 23 465201

    [4]

    Robertson J, Gillen R 2013 Microelectron. Eng. 109 208

    [5]

    Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304

    [6]

    Gao B, Sun B, Zhang H W, Liu L F, Han R Q, Kang J F, Yu B 2009 IEEE Electron Dev. Lett. 30 1326

    [7]

    Xu N, Liu L F, Sun X, Chen C, Wang Y, Han D D, Liu X Y, Han R Q, Kang J F, Yu B 2008 Semicond. Sci. Tech. 23 075019

    [8]

    Park J W, Jung K, Yang M K, Lee J K 2007 2007 Proceedings of the Sixteenth IEEE International Symposium on the Applications of Ferroelectrics Nara-City, Japan, May 27–31, 2007 p46

    [9]

    Li H X, Chen X P, Chen Q, Mao Q N, Xi J H, Ji Z G 2013 Acta Phys. Sin. 62 077202 (in Chinese) [李红霞, 陈雪平, 陈琪, 毛启楠, 席俊华, 季振国 2013 物理学报 62 077202]

    [10]

    Kim W G, Rhee S W 2010 Microelectron. Eng. 87 98

    [11]

    Zhou X L, Feng J, Cao J C, Chen J C, Sun J L 2008 Chinese J. Nonferrous Metal. 18 2253 (in Chinese) [周晓龙, 冯晶, 曹建春, 陈敬超, 孙加林 2008 中国有色金属学报 18 2253

    [12]

    Muňoz M C, Gallego S, Beltrán J I, Cerdá J 2006 Surf. Sci. Rep. 61 304

    [13]

    Jiang D E, Carter E A 2005 Acta Mater. 53 4498

    [14]

    Sasaki T, Matsunaga K, Ohta H, Hosono H, Yamamoto T, Ikuhara Y 2003 Sci. Technol. Adv. Mat. 4 575

    [15]

    Dmitriev S V, Yoshikawa N, Tanaka Y, Kagawa Y 2006 Mater. Sci. Eng. A 418 36

    [16]

    Dmitriev S V, Yoshikawa N, Kohyama M, Tanaka S, Yang R, Kagawa Y 2004 Acta Mater. 52 1959

    [17]

    Hashibon A, Elsässer C, Rhle M 2007 Acta Mater. 55 1657

    [18]

    Wang Y 2012 Ph. D. Dissertation (Gansu: Gansu University) (in Chinese) [王艳 2012 博士学位论文(甘肃: 兰州大学)]

    [19]

    Yang Y, Gao P, Gaba S, Chang T, Pan X, Lu W 2012 Nature Commun. 3 732

    [20]

    Sakamoto T, Lister K, Banno N, Hasegawa T, Terabe K, Aono M 2007 Appl. Phys. Lett. 91 092110

    [21]

    Choi S J, Park G S, Kim K H, Cho S, Yang W Y, Li X S, Moon J H, Lee K J 2011 Adv. Mater. 23 3272

    [22]

    Peng S, Zhuge F, Chen X, Zhu X, Hu B, Pan L, Chen B, Li R 2012 Appl. Phys. Lett. 100 072101

    [23]

    Tousimi K, Valiev R, Yavari A R 2000 Mater. Phys. Mech. 2 63

    [24]

    Wang J M, Zhou J, Liu J D, Xiong Z H 2006 Jiangxi Science 24 1 (in Chinese) [王建敏, 周珏, 刘继东, 熊志华 2006 江西科学 24 1]

    [25]

    Lu Z S, Li S S, Chen C, Yang Z X 2013 Acta Phys. Sin. 62 117301 (in Chinese) [路战胜, 李莎莎, 陈晨, 杨宗献 2013 物理学报 62 117301]

    [26]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [27]

    Xu B, Pan B C 2008 Acta Phys. Sin. 57 6526 (in Chinese) [徐波, 潘必才 2008 物理学报 57 6526]

    [28]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [29]

    Christensen M, Dudiy S, Wahnström G 2002 Phys. Rev. B 65 045408

    [30]

    Prada S, Rosa M, Giordano L, Di Valentin C, Pacchioni G 2011 Phys. Rev. B 83 245314

    [31]

    Tse K Y, Robertson J 2007 Phys. Rev. Lett. 99 086805

    [32]

    Savin A, Jepsen O, Flad J, Andresen O K, Preuss H 1992 Angew. Chem. Int. Edit. 31 187

  • [1]

    Celano U, Chen Y Y, Wouters D J, Groeseneken G, Jurczak M, Vandervorst W 2013 Appl. Phys. Lett. 102 121602

    [2]

    Lian W T, Long S B, L H B, Liu Q, Li Y T, Zhang S, Wang Y, Huo Z L, Dai Y H, Chen J N, Liu M 2011 Chin. Sci. Bull. 56 461

    [3]

    Yalon E, Cohen S, Gavrilov A, Ritter D 2012 Nanotechnology 23 465201

    [4]

    Robertson J, Gillen R 2013 Microelectron. Eng. 109 208

    [5]

    Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304

    [6]

    Gao B, Sun B, Zhang H W, Liu L F, Han R Q, Kang J F, Yu B 2009 IEEE Electron Dev. Lett. 30 1326

    [7]

    Xu N, Liu L F, Sun X, Chen C, Wang Y, Han D D, Liu X Y, Han R Q, Kang J F, Yu B 2008 Semicond. Sci. Tech. 23 075019

    [8]

    Park J W, Jung K, Yang M K, Lee J K 2007 2007 Proceedings of the Sixteenth IEEE International Symposium on the Applications of Ferroelectrics Nara-City, Japan, May 27–31, 2007 p46

    [9]

    Li H X, Chen X P, Chen Q, Mao Q N, Xi J H, Ji Z G 2013 Acta Phys. Sin. 62 077202 (in Chinese) [李红霞, 陈雪平, 陈琪, 毛启楠, 席俊华, 季振国 2013 物理学报 62 077202]

    [10]

    Kim W G, Rhee S W 2010 Microelectron. Eng. 87 98

    [11]

    Zhou X L, Feng J, Cao J C, Chen J C, Sun J L 2008 Chinese J. Nonferrous Metal. 18 2253 (in Chinese) [周晓龙, 冯晶, 曹建春, 陈敬超, 孙加林 2008 中国有色金属学报 18 2253

    [12]

    Muňoz M C, Gallego S, Beltrán J I, Cerdá J 2006 Surf. Sci. Rep. 61 304

    [13]

    Jiang D E, Carter E A 2005 Acta Mater. 53 4498

    [14]

    Sasaki T, Matsunaga K, Ohta H, Hosono H, Yamamoto T, Ikuhara Y 2003 Sci. Technol. Adv. Mat. 4 575

    [15]

    Dmitriev S V, Yoshikawa N, Tanaka Y, Kagawa Y 2006 Mater. Sci. Eng. A 418 36

    [16]

    Dmitriev S V, Yoshikawa N, Kohyama M, Tanaka S, Yang R, Kagawa Y 2004 Acta Mater. 52 1959

    [17]

    Hashibon A, Elsässer C, Rhle M 2007 Acta Mater. 55 1657

    [18]

    Wang Y 2012 Ph. D. Dissertation (Gansu: Gansu University) (in Chinese) [王艳 2012 博士学位论文(甘肃: 兰州大学)]

    [19]

    Yang Y, Gao P, Gaba S, Chang T, Pan X, Lu W 2012 Nature Commun. 3 732

    [20]

    Sakamoto T, Lister K, Banno N, Hasegawa T, Terabe K, Aono M 2007 Appl. Phys. Lett. 91 092110

    [21]

    Choi S J, Park G S, Kim K H, Cho S, Yang W Y, Li X S, Moon J H, Lee K J 2011 Adv. Mater. 23 3272

    [22]

    Peng S, Zhuge F, Chen X, Zhu X, Hu B, Pan L, Chen B, Li R 2012 Appl. Phys. Lett. 100 072101

    [23]

    Tousimi K, Valiev R, Yavari A R 2000 Mater. Phys. Mech. 2 63

    [24]

    Wang J M, Zhou J, Liu J D, Xiong Z H 2006 Jiangxi Science 24 1 (in Chinese) [王建敏, 周珏, 刘继东, 熊志华 2006 江西科学 24 1]

    [25]

    Lu Z S, Li S S, Chen C, Yang Z X 2013 Acta Phys. Sin. 62 117301 (in Chinese) [路战胜, 李莎莎, 陈晨, 杨宗献 2013 物理学报 62 117301]

    [26]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [27]

    Xu B, Pan B C 2008 Acta Phys. Sin. 57 6526 (in Chinese) [徐波, 潘必才 2008 物理学报 57 6526]

    [28]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [29]

    Christensen M, Dudiy S, Wahnström G 2002 Phys. Rev. B 65 045408

    [30]

    Prada S, Rosa M, Giordano L, Di Valentin C, Pacchioni G 2011 Phys. Rev. B 83 245314

    [31]

    Tse K Y, Robertson J 2007 Phys. Rev. Lett. 99 086805

    [32]

    Savin A, Jepsen O, Flad J, Andresen O K, Preuss H 1992 Angew. Chem. Int. Edit. 31 187

计量
  • 文章访问数:  5033
  • PDF下载量:  989
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-02
  • 修回日期:  2013-09-24
  • 刊出日期:  2013-12-05

/

返回文章
返回