搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光源参数及大气湍流对电磁光束传输偏振特性的影响

李成强 王挺峰 张合勇 谢京江 刘立生 郭劲

引用本文:
Citation:

光源参数及大气湍流对电磁光束传输偏振特性的影响

李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲

Effect of source parameters on polarization characteristics of electromagnetic beam propagating in atmospheric turbulence

Li Cheng-Qiang, Wang Ting-Feng, Zhang He-Yong, Xie Jing-Jiang, Liu Li-Sheng, Guo Jin
PDF
导出引用
  • 根据光束扩展理论,以部分相干的电磁高斯-谢尔光束为研究对象,分析了电磁光束传输时其偏振特性的变化机理. 结果表明,光源参数和大气湍流对电磁光束分量扩展的影响是导致传输过程中电磁光束偏振特性变化的原因. 在真空中传输时,电磁光束两分量的相干性存在差异,导致传输时电磁光束两分量扩展快慢不同,从而引起传输路径上光束谱偏振度的变化. 在大气湍流中,电磁光束两分量扩展的快慢与光源参数和大气湍流强度均有关,当传输路径较短时,电磁光束偏振变化主要与光源参数有关,变化特性与在真空中传输时的情况类似,而传输距离较远时,电磁光束偏振变化受大气湍流的影响明显,变化特性与在真空中传输时的情形存在不同.
    According to the theory of beam spreading and taking electromagnetic Gaussian Shell-model beam as an object of research, the change in its spectral degree of polarization is studied by numerical analysis. Based on the numerical results, the mechanism that governs the change in polarization of an electromagnetic beam on propagation is discussed. The results show that the beam spreading of two components of an electromagnetic beam results in the change in polarization of beam directly, and the beam spreading is determined by source parameters and atmospheric turbulence. The difference between beam spreading of two components induced by coherence leads to the change in polarization in free space. The change in degree of polarization is influenced by source parameters and turbulence on propagation in atmosphere. The result is similar to that in free space over relatively short distance, which is mainly governed by source parameters. With the enhancement of turbulence over a sufficiently long distance, the change in polarization in atmosphere is different from that in free space.
    • 基金项目: 国家自然科学基金(批准号:61205143)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61205143).
    [1]

    James D F V 1993 J. Opt. Soc. Am. A 11 161

    [2]

    Roychowdhury H, Ponomarenko S A, Wolf E 2005 J. Mod. Opt. 52 1611

    [3]

    Salem M, Wolf E 2008 Opt. Lett. 33 1180

    [4]

    Wolf E 2003 Phys. Lett. A 312 263

    [5]

    Roychowdhury H, Wolf E 2005 Opt. Commun. 252 268

    [6]

    Gori F, Santarsiero M, Borghi R, Wolf E 2006 Opt. Lett. 31 688

    [7]

    Wolf E 2007 Opt. Lett. 32 3400

    [8]

    Wolf E 2008 Opt. Lett. 33 642

    [9]

    Ji X L, Pu Z C 2010 Chin. Phys. B 19 029201

    [10]

    Fu W Y, Ma S Y 2008 Acta Phys. Sin. 57 1271 (in Chinese) [付文羽, 马书懿 2008 物理学报 57 1271]

    [11]

    Du X Y, Zhao D M 2008 Opt. Express 16 16172

    [12]

    Lu W, Liu L, Sun J, Yang Q, Zhu Y 2007 Opt. Commun. 271 1

    [13]

    Korotkova O, Salem M, Wolf E 2004 Opt. Commun. 233 225

    [14]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation Through Random Media (2nd Ed) (Washington: SPIE) pp67-69

    [15]

    Salem M, Korotkova O, Dogariu A, Wolf E 2004 Waves Random Media 14 513

    [16]

    Salem M, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) p564

    [17]

    Collett E, Wolf E 1979 Opt. Commun. 32 27

  • [1]

    James D F V 1993 J. Opt. Soc. Am. A 11 161

    [2]

    Roychowdhury H, Ponomarenko S A, Wolf E 2005 J. Mod. Opt. 52 1611

    [3]

    Salem M, Wolf E 2008 Opt. Lett. 33 1180

    [4]

    Wolf E 2003 Phys. Lett. A 312 263

    [5]

    Roychowdhury H, Wolf E 2005 Opt. Commun. 252 268

    [6]

    Gori F, Santarsiero M, Borghi R, Wolf E 2006 Opt. Lett. 31 688

    [7]

    Wolf E 2007 Opt. Lett. 32 3400

    [8]

    Wolf E 2008 Opt. Lett. 33 642

    [9]

    Ji X L, Pu Z C 2010 Chin. Phys. B 19 029201

    [10]

    Fu W Y, Ma S Y 2008 Acta Phys. Sin. 57 1271 (in Chinese) [付文羽, 马书懿 2008 物理学报 57 1271]

    [11]

    Du X Y, Zhao D M 2008 Opt. Express 16 16172

    [12]

    Lu W, Liu L, Sun J, Yang Q, Zhu Y 2007 Opt. Commun. 271 1

    [13]

    Korotkova O, Salem M, Wolf E 2004 Opt. Commun. 233 225

    [14]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation Through Random Media (2nd Ed) (Washington: SPIE) pp67-69

    [15]

    Salem M, Korotkova O, Dogariu A, Wolf E 2004 Waves Random Media 14 513

    [16]

    Salem M, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) p564

    [17]

    Collett E, Wolf E 1979 Opt. Commun. 32 27

计量
  • 文章访问数:  1771
  • PDF下载量:  357
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-30
  • 修回日期:  2014-01-21
  • 刊出日期:  2014-05-05

光源参数及大气湍流对电磁光束传输偏振特性的影响

  • 1. 中国科学院长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室, 长春 130033;
  • 2. 中国科学院大学, 北京 100049;
  • 3. 中国科学院长春光学精密机械与物理研究所中国科学院光学系统先进制造技术重点实验室, 长春 130033
    基金项目: 

    国家自然科学基金(批准号:61205143)资助的课题.

摘要: 根据光束扩展理论,以部分相干的电磁高斯-谢尔光束为研究对象,分析了电磁光束传输时其偏振特性的变化机理. 结果表明,光源参数和大气湍流对电磁光束分量扩展的影响是导致传输过程中电磁光束偏振特性变化的原因. 在真空中传输时,电磁光束两分量的相干性存在差异,导致传输时电磁光束两分量扩展快慢不同,从而引起传输路径上光束谱偏振度的变化. 在大气湍流中,电磁光束两分量扩展的快慢与光源参数和大气湍流强度均有关,当传输路径较短时,电磁光束偏振变化主要与光源参数有关,变化特性与在真空中传输时的情况类似,而传输距离较远时,电磁光束偏振变化受大气湍流的影响明显,变化特性与在真空中传输时的情形存在不同.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回