搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

输出能量4mJ的1kHz飞秒掺钛蓝宝石激光再生放大研究

沈忠伟 王兆华 范海涛 秦爽 滕浩 何鹏 魏志义

引用本文:
Citation:

输出能量4mJ的1kHz飞秒掺钛蓝宝石激光再生放大研究

沈忠伟, 王兆华, 范海涛, 秦爽, 滕浩, 何鹏, 魏志义

A 4 mJ femtosecond Ti:sapphire regenerative amplifier at 1 kHz repetition rate

Shen Zhong-Wei, Wang Zhao-Hua, Fan Hai-Tao, Qin Shuang, Teng Hao, He Peng, Wei Zhi-Yi
PDF
导出引用
  • 针对高能量千赫兹重复频率飞秒激光的应用需求,设计了一套采用线性再生腔结构的高效率飞秒钛宝石激光啁啾脉冲放大系统. 通过优化腔型设计,在重复频率为1 kHz、单脉冲能量为20 mJ 的527 nm激光抽运下,将展宽后的800 nm啁啾脉冲激光的能量放大到5.8 mJ,对应斜效率达到30.7%. 进一步通过色散补偿压缩脉冲宽度,获得了单脉冲能量为4 mJ、脉冲宽度为45.7 fs的输出,稳定性测量表明激光的能量抖动仅为0.18%(均方根值).
    To meet the application requirements for high energy kHz repetition rate femtosecond laser, a high-efficiency femtosecond Ti:sapphire linear regenerative amplifier is designed. By optimizing the parameters of the cavity, 5.8 mJ chirped pulses at 800 nm are obtained, under pump energy of 20 mJ with wavelength of 527 nm at 1 kHz repetition rate, corresponding to a slope efficiency of 30.7%. By compensating for the dispersion, 4 mJ laser pulses at 800 nm with pulse duration of 45.7 fs are achieved. The energy fluctuation is 0.18% (RMS) in 5 h.
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB922402)、国家重大科学仪器设备开发专项基金(批准号:2012YQ120047)和国家自然科学基金(批准号:11174361)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB922402), the Special Foundation of State Major Scientific Instrument and Equipment Development of China (Grant No. 2012YQ120047), and the National Natural Science Foundation of China (Grant No. 11174361).
    [1]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219

    [2]

    Spence D E, Kean P N, Sibbett W 1991 Opt. Lett. 16 42

    [3]

    Perry M D, Pennington D, Stuart B C, Tietbohl G, Britten J A, Brown C, Herman S, Golick B, Kartz M, Miller J, Powell H T, Vergino M, Yanovsky V 1999 Opt. Lett. 24 160

    [4]

    Wang Z H, Liu C, Shen Z W, Zhang Q, Teng H, Wei Z Y 2011 Opt. Lett. 36 3194

    [5]

    Umstadter D 2001 Phys. Plasmas 8 1774

    [6]

    Murnane M M, Kapteyn H C, Rosen M D, Falcone R W 1991 Science 251 531

    [7]

    Remignton B A, Drake R P, Takabe H, Arnett D 2000 Phys. Plasmas 7 1641

    [8]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth C, Woodworth J, Campbell M E, Perry M D, Mason R J 1997 Phys. Plasmas 4 1626

    [9]

    Clark E L, Krushelnick K, Zepf M, Beg F N, Tatarakis M, Machacek A, Santata M, Watts I, Norreys P A, Dangor A E 2000 Phys. Rev. Lett. 85 1654

    [10]

    Zhang X S, Schneider E, Taft G, Kaptyen H, Murnane M, Backus S 2012 Opt. Express 20 7015

    [11]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N 2001 Nature 414 509

    [12]

    Cerullo G, Lanzani G, Nisoli M, Priori E, Stagira S, Zavelani-Rossi M, Svelto O, Poletto L, Villoresi P 2000 Appl. Phys. B 71 779

    [13]

    Zhu J F, Wei Z Y 2006 Physics 35 679 (in Chinese) [朱江峰, 魏志义 2006 物理 35 679]

    [14]

    Gattass R R, Mazur E 2008 Nat. Photon. 2 219

    [15]

    Koechner W 2005 Solid-State Laser Engineering (6th Ed.) (Berlin: Springer) p156

    [16]

    Wang Q S, Cheng G H, Liu Q, Sun C D, Zhao W, Chen G F 2004 Acta Phys. Sin. 53 87 (in Chinese) [王屹山, 程光华, 刘青, 孙传东, 赵卫, 陈国夫 2004 物理学报 53 87]

    [17]

    Yanovsky V, Felix C Mourou G 2002 Appl. Phys. B 74 181

    [18]

    Wei Z Y, Yu Z X, Li R J, Yang J, Li Q 1996 Chin. J. Lasers 23 198 (in Chinese) [魏志义, 余振新, 李荣基, 杨杰, 李麒 1996 中国激光 23 198]

    [19]

    Song Y R, Zhang Z G, Wang Q Y 2003 Acta Phys. Sin. 52 581 (in Chinese) [宋晏蓉, 张志刚, 王清月 2003 物理学报 52 581]

    [20]

    Clarkson W A 2001 J. Phys. D: Appl. Phys. 34 2381

  • [1]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219

    [2]

    Spence D E, Kean P N, Sibbett W 1991 Opt. Lett. 16 42

    [3]

    Perry M D, Pennington D, Stuart B C, Tietbohl G, Britten J A, Brown C, Herman S, Golick B, Kartz M, Miller J, Powell H T, Vergino M, Yanovsky V 1999 Opt. Lett. 24 160

    [4]

    Wang Z H, Liu C, Shen Z W, Zhang Q, Teng H, Wei Z Y 2011 Opt. Lett. 36 3194

    [5]

    Umstadter D 2001 Phys. Plasmas 8 1774

    [6]

    Murnane M M, Kapteyn H C, Rosen M D, Falcone R W 1991 Science 251 531

    [7]

    Remignton B A, Drake R P, Takabe H, Arnett D 2000 Phys. Plasmas 7 1641

    [8]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth C, Woodworth J, Campbell M E, Perry M D, Mason R J 1997 Phys. Plasmas 4 1626

    [9]

    Clark E L, Krushelnick K, Zepf M, Beg F N, Tatarakis M, Machacek A, Santata M, Watts I, Norreys P A, Dangor A E 2000 Phys. Rev. Lett. 85 1654

    [10]

    Zhang X S, Schneider E, Taft G, Kaptyen H, Murnane M, Backus S 2012 Opt. Express 20 7015

    [11]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N 2001 Nature 414 509

    [12]

    Cerullo G, Lanzani G, Nisoli M, Priori E, Stagira S, Zavelani-Rossi M, Svelto O, Poletto L, Villoresi P 2000 Appl. Phys. B 71 779

    [13]

    Zhu J F, Wei Z Y 2006 Physics 35 679 (in Chinese) [朱江峰, 魏志义 2006 物理 35 679]

    [14]

    Gattass R R, Mazur E 2008 Nat. Photon. 2 219

    [15]

    Koechner W 2005 Solid-State Laser Engineering (6th Ed.) (Berlin: Springer) p156

    [16]

    Wang Q S, Cheng G H, Liu Q, Sun C D, Zhao W, Chen G F 2004 Acta Phys. Sin. 53 87 (in Chinese) [王屹山, 程光华, 刘青, 孙传东, 赵卫, 陈国夫 2004 物理学报 53 87]

    [17]

    Yanovsky V, Felix C Mourou G 2002 Appl. Phys. B 74 181

    [18]

    Wei Z Y, Yu Z X, Li R J, Yang J, Li Q 1996 Chin. J. Lasers 23 198 (in Chinese) [魏志义, 余振新, 李荣基, 杨杰, 李麒 1996 中国激光 23 198]

    [19]

    Song Y R, Zhang Z G, Wang Q Y 2003 Acta Phys. Sin. 52 581 (in Chinese) [宋晏蓉, 张志刚, 王清月 2003 物理学报 52 581]

    [20]

    Clarkson W A 2001 J. Phys. D: Appl. Phys. 34 2381

计量
  • 文章访问数:  2272
  • PDF下载量:  499
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-27
  • 修回日期:  2014-01-23
  • 刊出日期:  2014-05-05

输出能量4mJ的1kHz飞秒掺钛蓝宝石激光再生放大研究

  • 1. 中国科学院物理研究所, 北京凝聚态物理国家实验室, 北京 100190;
  • 2. 西安电子科技大学物理与光电工程学院, 西安 710126
    基金项目: 

    国家重点基础研究发展计划(批准号:2013CB922402)、国家重大科学仪器设备开发专项基金(批准号:2012YQ120047)和国家自然科学基金(批准号:11174361)资助的课题.

摘要: 针对高能量千赫兹重复频率飞秒激光的应用需求,设计了一套采用线性再生腔结构的高效率飞秒钛宝石激光啁啾脉冲放大系统. 通过优化腔型设计,在重复频率为1 kHz、单脉冲能量为20 mJ 的527 nm激光抽运下,将展宽后的800 nm啁啾脉冲激光的能量放大到5.8 mJ,对应斜效率达到30.7%. 进一步通过色散补偿压缩脉冲宽度,获得了单脉冲能量为4 mJ、脉冲宽度为45.7 fs的输出,稳定性测量表明激光的能量抖动仅为0.18%(均方根值).

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回