搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃料抛撒成雾及其燃烧爆炸的光滑离散颗粒流体动力学方法数值模拟研究

陈福振 强洪夫 苗刚 高巍然

引用本文:
Citation:

燃料抛撒成雾及其燃烧爆炸的光滑离散颗粒流体动力学方法数值模拟研究

陈福振, 强洪夫, 苗刚, 高巍然

Numerical simulation of fuel dispersal into cloud and its combustion and explosion with smoothed discrete particle hydrodynamics

Chen Fu-Zhen, Qiang Hong-Fu, Miao Gang, Gao Wei-Ran
PDF
导出引用
  • 燃料在炸药爆炸驱动下形成燃料空气爆炸云团, 进而引燃爆炸, 对目标造成毁伤. 本文在前期提出的光滑离散颗粒流体动力学方法(SDPH)的基础上, 引入描述炸药由爆轰到膨胀整个过程的Jones-Wilkins-Lee状态方程及描述气体快速燃烧过程的EBU-Arrhenius燃烧模型, 建立了求解战斗部起爆、燃料抛撒和燃料二次引燃爆炸问题的新型SDPH方法. 设计了圆环形燃料颗粒在炸药爆炸驱动下运动抛撒的算例进行数值验证, 结果与理论相符; 对燃料空气炸药(FAE)云雾的形成和发展过程进行了数值模拟, 分析了云雾的形态, 并与实验结果进行对比, 符合较好, 同时分析了不同起爆方式对云雾团成型的影响; 最后, 在云雾团成型的基础上, 引入蒸发燃烧模型对FAE的燃烧爆炸过程进行了模拟研究. 结果表明, 本文建立的数学模型和计算方法可以较好的模拟燃料空气炸药抛撒成雾及云雾燃烧爆炸过程, 为该类武器装备的设计研究提供了较好的数值方法.
    A fuel air cloud is formed under the driving force of the explosive detonation and then it’s ignited to explosion to attack the target. The existing numerical simulations are mainly limited to the fuel dispersal processes which are all based on mesh methods. The fuel particles in the air cloud are difficult to traced. Otherwise, the computing process is complex and could not be solved by the exiting methods for the chemical reaction and the forming and propagation of shock waves are both involved in the fuel combustion and explosion. Smoothed discrete particle hydrodynamics (SDPH), as a new method to solve the gas-particle two-phase flow, has been successfully used to simulate the aeolian sand transport, heat transfer and evaporation. Based on the previous work, the Jones-Wilkins-Lee (JWL) function is imported to describe the explosive detonation to expansion and it is solved by finite volume method. The fuel drops dispersed by explosion are traced by the improved smoothed particle hydrodynamics. The drop evaporation model and the EBU-Arrhenius combustion model for gas high-speed combustion are introduced to describe the combustion and detonation of fuel drops. Then we build a new SDPH method to simulate the warhead initiation, fuel dispersal, and the fuel second explosion. Firstly, we design a test that is the dispersal of circular fuel drops drove by explosive detonation to validate our new method. The changing of the explosive detonation pressure and the velocity fields of explosive and particles are analyzed and they are consistent with the theory. And then, the forming and developing of FAE cloud are simulated. Through comparing with the experiments, the shapes of the cloud by the two methods coincide with each other. The effects of different initiations on the cloud forming are also analyzed. Finally, based on the cloud group forming, the evaporation and combustion models are introduced to study the combustion and explosion of FAE. We obtain the velocity field and the distribution of combustion product. The result indicates that the fuel dispersal into cloud and its explosion can be simulated better with the mathematical model and computational method built in this paper. This finding supplies a more effective numerical method for the design and research on this type of weapon equipments.
    • 基金项目: 国家自然科学基金(批准号:51276192)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51276192).
    [1]

    Samirant M, Smeets G, Baras Ch 1989 Propell. Explos. Pyrot. 14 47

    [2]

    Zhang Q, Qin B, Bai C H, Guo Y Y, Liu Q M, Liang H M 2007 Chinese J. Energ. Mater. 10 447 (in Chinese) [张奇, 覃彬, 白春华, 郭彦懿, 刘庆明, 梁慧敏 2007 含能材料 10 447]

    [3]

    Gao H Q, Lu F Y, Wang S L, Luo Y F, Yuan Y N 2010 J. Ballistics 22 58 (in Chinese) [高洪泉, 卢芳云, 王少龙, 罗永锋, 袁亚楠 2010 弹道学报 22 58]

    [4]

    Li X, Wang B L, Han Z, Wang X L 2013 Explos. Mater. 42 23 (in Chinese) [李席, 王伯良, 韩早, 王兴龙 2013 爆破器材 42 23]

    [5]

    Guo X Y 2006 Ph. D. Dissertation (Nanjing:Nanjing University of Science and Technology) (in Chinese) [郭学永 2006 博士学位论文(南京:南京理工大学)]

    [6]

    Jiang L, Bai C H, Liu Q M 2010 Explos. Shock Waves 30 588 (in Chinese) [蒋丽, 白春华, 刘庆明 2010 爆炸与冲击 30 588]

    [7]

    Sauer F, Stubbs T 1977 AD-A047385

    [8]

    Sedgwick R T, Krata H R 1976 AD-A159

    [9]

    Hui J M, Liu R H, Peng J H, Tang M J 1996 Chinese J Energ. Mater. 4 123 (in Chinese) [惠君明, 刘荣海, 彭金华, 汤明钧 1996 含能材料 4 123]

    [10]

    Zhang T, Hui J M, Xie L F, Guo X Y, Yu J 2004 Explos Shock Waves 24 176 (in Chinese) [张陶, 惠君明, 解立峰, 於津 2004 爆炸与冲击 24 176]

    [11]

    Xiong Z Z, Bai C H, Zhang Q, Liu Q M 2001 Blasting 18 83 (in Chinese) [熊祖钊, 白春华, 张奇, 刘庆明 2001 爆破 18 83]

    [12]

    Lin W, Zhou J, Fan X H, Lin Z Y 2015 Chin. Phys. B 24 014701

    [13]

    Rosenblatt M 1976 AD-BO-17905

    [14]

    Gardner D R 1979 SAND-90-0686

    [15]

    Glass M W 1978 SAND90

    [16]

    Ivandaev A I 1982 Fluid Dynam. 17 68

    [17]

    Xi Z D, Xie L F, Liu J C, Li J F 2004 Explos. Shock Waves 24 240 (in Chinese) [席志德, 解立峰, 刘家骢, 李剑锋 2004 爆炸与冲击 24 240

    [18]

    Xue S S, Liu J C, Zhu G S, Peng J H 1998 Explos. Shock Waves 18 296 (in Chinese) [薛社生, 刘家聪, 朱广圣, 彭金华 1998 爆炸与冲击 18 296]

    [19]

    Jia F 2014 MS Thesis (Nanjing:Nanjing University of Science and Technology) (in Chinese) [贾飞 2014 硕士学位论文(南京:南京理工大学)]

    [20]

    Chen J C, Zhang Q, Ma Q J, Huang Y, Liu X L, Shen S L, Li D 2014 Acta Armamentarii 35 972 (in Chinese) [陈嘉琛, 张奇, 马秋菊, 黄莹, 刘雪岭, 沈世磊, 李栋 2014 兵工学报 35 972]

    [21]

    Shi Y T, Zhang Q 2014 Chinese J Energ. Mater. 22 353 (in Chinese) [史远通, 张奇 2014 含能材料 22 353]

    [22]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 130202 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 物理学报 63 130202]

    [23]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 230206 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 物理学报 63 230206]

    [24]

    Dobratz B M 1981 Explosive Handbook (Livermore:Lawrence Livermore National Laboratory)

    [25]

    Qiang H F, Wang K P, Gao W R 2008 T. TianJin Univ. 14 495

  • [1]

    Samirant M, Smeets G, Baras Ch 1989 Propell. Explos. Pyrot. 14 47

    [2]

    Zhang Q, Qin B, Bai C H, Guo Y Y, Liu Q M, Liang H M 2007 Chinese J. Energ. Mater. 10 447 (in Chinese) [张奇, 覃彬, 白春华, 郭彦懿, 刘庆明, 梁慧敏 2007 含能材料 10 447]

    [3]

    Gao H Q, Lu F Y, Wang S L, Luo Y F, Yuan Y N 2010 J. Ballistics 22 58 (in Chinese) [高洪泉, 卢芳云, 王少龙, 罗永锋, 袁亚楠 2010 弹道学报 22 58]

    [4]

    Li X, Wang B L, Han Z, Wang X L 2013 Explos. Mater. 42 23 (in Chinese) [李席, 王伯良, 韩早, 王兴龙 2013 爆破器材 42 23]

    [5]

    Guo X Y 2006 Ph. D. Dissertation (Nanjing:Nanjing University of Science and Technology) (in Chinese) [郭学永 2006 博士学位论文(南京:南京理工大学)]

    [6]

    Jiang L, Bai C H, Liu Q M 2010 Explos. Shock Waves 30 588 (in Chinese) [蒋丽, 白春华, 刘庆明 2010 爆炸与冲击 30 588]

    [7]

    Sauer F, Stubbs T 1977 AD-A047385

    [8]

    Sedgwick R T, Krata H R 1976 AD-A159

    [9]

    Hui J M, Liu R H, Peng J H, Tang M J 1996 Chinese J Energ. Mater. 4 123 (in Chinese) [惠君明, 刘荣海, 彭金华, 汤明钧 1996 含能材料 4 123]

    [10]

    Zhang T, Hui J M, Xie L F, Guo X Y, Yu J 2004 Explos Shock Waves 24 176 (in Chinese) [张陶, 惠君明, 解立峰, 於津 2004 爆炸与冲击 24 176]

    [11]

    Xiong Z Z, Bai C H, Zhang Q, Liu Q M 2001 Blasting 18 83 (in Chinese) [熊祖钊, 白春华, 张奇, 刘庆明 2001 爆破 18 83]

    [12]

    Lin W, Zhou J, Fan X H, Lin Z Y 2015 Chin. Phys. B 24 014701

    [13]

    Rosenblatt M 1976 AD-BO-17905

    [14]

    Gardner D R 1979 SAND-90-0686

    [15]

    Glass M W 1978 SAND90

    [16]

    Ivandaev A I 1982 Fluid Dynam. 17 68

    [17]

    Xi Z D, Xie L F, Liu J C, Li J F 2004 Explos. Shock Waves 24 240 (in Chinese) [席志德, 解立峰, 刘家骢, 李剑锋 2004 爆炸与冲击 24 240

    [18]

    Xue S S, Liu J C, Zhu G S, Peng J H 1998 Explos. Shock Waves 18 296 (in Chinese) [薛社生, 刘家聪, 朱广圣, 彭金华 1998 爆炸与冲击 18 296]

    [19]

    Jia F 2014 MS Thesis (Nanjing:Nanjing University of Science and Technology) (in Chinese) [贾飞 2014 硕士学位论文(南京:南京理工大学)]

    [20]

    Chen J C, Zhang Q, Ma Q J, Huang Y, Liu X L, Shen S L, Li D 2014 Acta Armamentarii 35 972 (in Chinese) [陈嘉琛, 张奇, 马秋菊, 黄莹, 刘雪岭, 沈世磊, 李栋 2014 兵工学报 35 972]

    [21]

    Shi Y T, Zhang Q 2014 Chinese J Energ. Mater. 22 353 (in Chinese) [史远通, 张奇 2014 含能材料 22 353]

    [22]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 130202 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 物理学报 63 130202]

    [23]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 230206 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 物理学报 63 230206]

    [24]

    Dobratz B M 1981 Explosive Handbook (Livermore:Lawrence Livermore National Laboratory)

    [25]

    Qiang H F, Wang K P, Gao W R 2008 T. TianJin Univ. 14 495

  • [1] 曹树利, 李寿哲, 牛裕龙, 李容毅, 朱海龙. 常压下预混甲烷和空气微波等离子体放电燃烧的实验研究. 物理学报, 2023, 72(15): 155201. doi: 10.7498/aps.72.20230676
    [2] 姚能智, 王浩, 王斌, 王学生. 基于变换流体动力学的文丘里效应旋聚器的设计与非互易特性研究. 物理学报, 2022, 71(10): 104701. doi: 10.7498/aps.71.20212361
    [3] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理. 物理学报, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [4] 蔡继兴, 郭明, 渠旭, 李贺, 金光勇. 激光诱导等离子体的气体动力学和燃烧波扩展速度研究. 物理学报, 2017, 66(9): 094202. doi: 10.7498/aps.66.094202
    [5] 杨杰, 刘清惓, 戴伟, 冒晓莉, 张加宏, 李敏. 用于气象观测的阵列式温度传感器流体动力学分析与实验研究. 物理学报, 2016, 65(9): 094209. doi: 10.7498/aps.65.094209
    [6] 戴伟, 刘清惓, 杨杰, 宿恺峰, 韩上邦, 施佳驰. 探空温度传感器的计算流体动力学分析与实验研究. 物理学报, 2016, 65(11): 114701. doi: 10.7498/aps.65.114701
    [7] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究. 物理学报, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [8] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟. 物理学报, 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [9] 许爱国, 张广财, 应阳君. 燃烧系统的离散Boltzmann建模与模拟研究进展. 物理学报, 2015, 64(18): 184701. doi: 10.7498/aps.64.184701
    [10] 冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏. 探空湿度测量太阳辐射误差修正流体动力学研究. 物理学报, 2014, 63(14): 144701. doi: 10.7498/aps.63.144701
    [11] 雷娟棉, 黄灿. 一种改进的光滑粒子流体动力学前处理方法. 物理学报, 2014, 63(14): 144702. doi: 10.7498/aps.63.144702
    [12] 陈福振, 强洪夫, 高巍然. 气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟. 物理学报, 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [13] 杨晋朝, 夏智勋, 胡建新. 镁颗粒群着火和燃烧过程数值模拟. 物理学报, 2013, 62(7): 074701. doi: 10.7498/aps.62.074701
    [14] 韩亚伟, 强洪夫, 赵玖玲, 高巍然. 光滑粒子流体动力学方法固壁处理的一种新型排斥力模型. 物理学报, 2013, 62(4): 044702. doi: 10.7498/aps.62.044702
    [15] 蒋亦民, 刘佑. 水-气-颗粒固体三相混合系统的流体动力学. 物理学报, 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [16] 强洪夫, 刘开, 陈福振. 液滴在气固交界面变形移动问题的光滑粒子流体动力学模拟. 物理学报, 2012, 61(20): 204701. doi: 10.7498/aps.61.204701
    [17] 马天鹏, 胡立群, 陈开云. 小波变换在HT-7 Tokamak磁流体动力学振荡动态频谱分析中的应用. 物理学报, 2010, 59(10): 7209-7213. doi: 10.7498/aps.59.7209
    [18] 于溪凤, 胡火生, 贺礼端, 蒋 政, 刘 祥, 胡壮麒. 电流体动力学技术制备的Sn-Bi纳米超微粉的微观结构特征. 物理学报, 1999, 48(6): 1030-1036. doi: 10.7498/aps.48.1030
    [19] 匡光力, G.WAIDMANN. TEXTOR托卡马克等离子体的磁流体动力学振荡特性. 物理学报, 1994, 43(9): 1466-1475. doi: 10.7498/aps.43.1466
    [20] 谢学纲, 陈式刚, 洪朝生. 超导体流体动力学方程. 物理学报, 1990, 39(4): 632-638. doi: 10.7498/aps.39.632
计量
  • 文章访问数:  5386
  • PDF下载量:  355
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-02
  • 修回日期:  2015-03-12
  • 刊出日期:  2015-06-05

/

返回文章
返回