搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度和应变速率耦合作用下纳米晶Ni压缩行为研究

杨剑群 马国亮 李兴冀 刘超铭 刘海

引用本文:
Citation:

温度和应变速率耦合作用下纳米晶Ni压缩行为研究

杨剑群, 马国亮, 李兴冀, 刘超铭, 刘海

Compressive behavior of nanocrystalline nickel at various temperatures and strain rates

Yang Jian-Qun, Ma Guo-Liang, Li Xing-Ji, Liu Chao-Ming, Liu Hai
PDF
导出引用
  • 本文利用低温力学测试系统研究了电化学沉积纳米晶Ni在不同温度和宽应变速率条件下的压缩行为. 借助应变速率敏感指数、激活体积、扫描电子显微镜及高分辨透射电子显微镜方法, 对纳米晶Ni的压缩塑性变形机理进行了表征. 研究表明, 在较低温度条件下, 纳米晶Ni的塑性变形主要是由晶界位错协调变形主导, 晶界本征位错引出后无阻碍的在晶粒内无位错区运动, 直至在相对晶界发生类似切割林位错行为. 并且, 在协调塑性变形时引出位错的残留位错能够增加应变相容性和减小应力集中; 在室温条件下, 纳米晶Ni的塑性变形机理主要是晶界-位错协调变形与晶粒滑移/旋转共同主导. 利用晶界位错协调变形机理和残留位错运动与温度及缺陷的相关性揭示了纳米晶Ni在不同温度、不同应变速率条件下力学压缩性能差异的内在原因.
    In this paper, compressive behavior of electrodeposited nano-crystalline (nc) Ni at various temperatures and strain rates is studied using a low temperature mechanic test system. Plastic deformation mechanisms of nc Ni caused by compression are characterized by the strain rate sensitivity index, the activation volume, and examined by scanning electron microscopy and high resolution transmission electron microscopic analysis. Results show that at low temperatures, the plastic deformation of nc Ni is mainly dominated by grain boundary accommodated dislocations. In other words, during plastic deformation of nc Ni at low temperatures, the intrinsic dislocation at the grain boundary bends up and expands without obstacles to the opposite grain boundary in the inner grain dislocation-free zone, until the occurrence of similar cutting forest-dislocation behavior appearing at opposite grain boundary. Moreover, the residual dislocations in the grain boundary bending out during plastic deformation could increase the strain compatibility and decrease the stress concentration. At room temperature, the plastic deformation mechanism of nc Ni is controlled by the deformation of grain boundary accommodated dislocations and grain slipping/rotating. Based on the above analyses, differences in compressive behavior of nc Ni at various temperatures and strain rates can be revealed by the correlation of deformation mechanisms of grain boundary accommodated dislocations and residual dislocation movement, temperature and defects in nc Ni.
    • 基金项目: 国家自然科学基金(批准号:51401067)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51401067).
    [1]

    Gleiter H 1989 Prog. Mater. Sci. 33 223

    [2]

    Yang D, Zhong N, Shang H L, Sun S Y, Li G Y 2013 Acta Phys. Sin. 62 036801 (in Chinese) [杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬 2013 物理学报 62 036801]

    [3]

    Gleiter H 2000 Acta. Mater. 48 1

    [4]

    Tschopp M A, McDowell D L 2008 Scripta. Mater. 58 299

    [5]

    Li H, Liaw P K, Choo H, Tabachnikova E D, Podolskiy A V, Smirnov S N, Bengus V Z 2008 Mat. Sci. Eng A 493 93

    [6]

    Chokshi A H, Rosen A, Karch J, Gleiter H 1989 Scripta. Mater. 23 1679

    [7]

    Wu X, Zhu Y T, Chen M W, Ma E 2006 Scripta. Mater. 54 1685

    [8]

    Wang Y, Ma E 2003 Appl. Phys. Lett. 83 3165

    [9]

    Pande C, Masumura R, Armstrong R 1993 Nanostrured Materials. 2 323

    [10]

    Dalla Torre F, Van Swygenhoven H, Victoria M 2002 Acta. Mater 50 3957

    [11]

    Van Swygenhoven H, Spaczer M, Caro A 1999 Acta. Mater. 47 3117

    [12]

    Van Swygenhoven H, Derlet P 2001 Physical Review B 64 224105

    [13]

    Van Swygenhoven H, Caro A, Farkas D 2001 Materials Science and Engineering A 309 440

    [14]

    Li D, Wang F C, Yang Z Y, Zhao Y P 2014 Science China-Physics Mechanics and Astronomy. 57 2177

    [15]

    Zhu Y T, Wu X L, Liao X Z, Narayan J, Mathaudhu S N, Kecskes L J 2009 Appl. Phys. Lett. 95 031909

    [16]

    Ball A, Hutchinson M M 1969 J. Mater. Sci. 3 1

    [17]

    Li J C M 1963 Trans. Met. Soc. 227 239

    [18]

    Ma E 2003 Scripta. Mater. 49 663

    [19]

    Van Swygenhoven H, Caro A 1997 Appl. Phys. Lett. 71 1652

    [20]

    Wang Y M, Hamza A V, Ma E 2006 Acta. Mater. 54 2715

    [21]

    Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 426

    [22]

    Liao X, Srinivasan S, Zhao Y, Baskes M, Zhu Y, Zhou F, Lavernia E, Xu H 2004 Appl. Phys. Lett. 84 3564

    [23]

    Gleiter H 2000 Acta. Mater. 48 1

    [24]

    Asaro R J, Krysl P, Kad B 2003 Philos. Mag. 83 733

    [25]

    Nieh T G, Wadsworth J 1991 Scripta. Metall. Mater. 25 955

    [26]

    Meyers M A, Vöhringer O, Lubarda V A 2001 Acta. Mater. 49 4025

    [27]

    Hasnaoui A, Van Swygenhoven H, Derlet P M 2003 Science. 300 1550

    [28]

    Van Swygenhoven H, Spaczer M, Caro A 1999 Acta. Mater. 47 3117

    [29]

    Van Swygenhoven H, Derlet P 2001 Physical Review B 64 224105

    [30]

    Kim H, Hong S 1999 Acta. Mater. 47 2059

  • [1]

    Gleiter H 1989 Prog. Mater. Sci. 33 223

    [2]

    Yang D, Zhong N, Shang H L, Sun S Y, Li G Y 2013 Acta Phys. Sin. 62 036801 (in Chinese) [杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬 2013 物理学报 62 036801]

    [3]

    Gleiter H 2000 Acta. Mater. 48 1

    [4]

    Tschopp M A, McDowell D L 2008 Scripta. Mater. 58 299

    [5]

    Li H, Liaw P K, Choo H, Tabachnikova E D, Podolskiy A V, Smirnov S N, Bengus V Z 2008 Mat. Sci. Eng A 493 93

    [6]

    Chokshi A H, Rosen A, Karch J, Gleiter H 1989 Scripta. Mater. 23 1679

    [7]

    Wu X, Zhu Y T, Chen M W, Ma E 2006 Scripta. Mater. 54 1685

    [8]

    Wang Y, Ma E 2003 Appl. Phys. Lett. 83 3165

    [9]

    Pande C, Masumura R, Armstrong R 1993 Nanostrured Materials. 2 323

    [10]

    Dalla Torre F, Van Swygenhoven H, Victoria M 2002 Acta. Mater 50 3957

    [11]

    Van Swygenhoven H, Spaczer M, Caro A 1999 Acta. Mater. 47 3117

    [12]

    Van Swygenhoven H, Derlet P 2001 Physical Review B 64 224105

    [13]

    Van Swygenhoven H, Caro A, Farkas D 2001 Materials Science and Engineering A 309 440

    [14]

    Li D, Wang F C, Yang Z Y, Zhao Y P 2014 Science China-Physics Mechanics and Astronomy. 57 2177

    [15]

    Zhu Y T, Wu X L, Liao X Z, Narayan J, Mathaudhu S N, Kecskes L J 2009 Appl. Phys. Lett. 95 031909

    [16]

    Ball A, Hutchinson M M 1969 J. Mater. Sci. 3 1

    [17]

    Li J C M 1963 Trans. Met. Soc. 227 239

    [18]

    Ma E 2003 Scripta. Mater. 49 663

    [19]

    Van Swygenhoven H, Caro A 1997 Appl. Phys. Lett. 71 1652

    [20]

    Wang Y M, Hamza A V, Ma E 2006 Acta. Mater. 54 2715

    [21]

    Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 426

    [22]

    Liao X, Srinivasan S, Zhao Y, Baskes M, Zhu Y, Zhou F, Lavernia E, Xu H 2004 Appl. Phys. Lett. 84 3564

    [23]

    Gleiter H 2000 Acta. Mater. 48 1

    [24]

    Asaro R J, Krysl P, Kad B 2003 Philos. Mag. 83 733

    [25]

    Nieh T G, Wadsworth J 1991 Scripta. Metall. Mater. 25 955

    [26]

    Meyers M A, Vöhringer O, Lubarda V A 2001 Acta. Mater. 49 4025

    [27]

    Hasnaoui A, Van Swygenhoven H, Derlet P M 2003 Science. 300 1550

    [28]

    Van Swygenhoven H, Spaczer M, Caro A 1999 Acta. Mater. 47 3117

    [29]

    Van Swygenhoven H, Derlet P 2001 Physical Review B 64 224105

    [30]

    Kim H, Hong S 1999 Acta. Mater. 47 2059

  • [1] 董烨, 朱特, 宋亚敏, 叶凤娇, 张鹏, 杨启贵, 刘福雁, 陈雨, 曹兴忠. 低活化马氏体钢中位错对氦辐照缺陷的影响. 物理学报, 2023, 72(18): 187801. doi: 10.7498/aps.72.20230694
    [2] 张博佳, 安敏荣, 胡腾, 韩腊. 镁中位错和非晶作用机制的分子动力学模拟. 物理学报, 2022, 71(14): 143101. doi: 10.7498/aps.71.20212318
    [3] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [4] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [5] 李鸿明, 董闯, 王清, 李晓娜, 赵亚军, 周大雨. 电阻率与强度性能的关联及铜合金性能分区. 物理学报, 2019, 68(1): 016101. doi: 10.7498/aps.68.20181498
    [6] 宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会. 集流体塑性变形对锂离子电池双层电极中锂扩散和应力的影响. 物理学报, 2018, 67(14): 140201. doi: 10.7498/aps.67.20180148
    [7] 高英俊, 秦河林, 周文权, 邓芊芊, 罗志荣, 黄创高. 高温应变下的晶界湮没机理的晶体相场法研究. 物理学报, 2015, 64(10): 106105. doi: 10.7498/aps.64.106105
    [8] 第伍旻杰, 胡晓棉. 高应变率压缩下纳米孔洞对金属铝塑性变形的影响研究. 物理学报, 2015, 64(17): 170201. doi: 10.7498/aps.64.170201
    [9] 邵宇飞, 杨鑫, 李久会, 赵星. Cu刃型扩展位错附近局部应变场的原子模拟研究. 物理学报, 2014, 63(7): 076103. doi: 10.7498/aps.63.076103
    [10] 陈丽群, 于涛, 彭小芳, 刘健. 难熔元素钨在NiAl位错体系中的占位及对键合性质的影响. 物理学报, 2013, 62(11): 117101. doi: 10.7498/aps.62.117101
    [11] 徐爽, 郭雅芳. 纳米铜薄膜塑性变形中空位型缺陷形核与演化的分子动力学研究. 物理学报, 2013, 62(19): 196201. doi: 10.7498/aps.62.196201
    [12] 马国亮, 刘海, 王豪, 李兴冀, 杨剑群, 何世禹. 纳米Ni在77 K温度下压缩行为的研究. 物理学报, 2013, 62(14): 147102. doi: 10.7498/aps.62.147102
    [13] 李联和, 刘官厅. 一维六方准晶中螺形位错与楔形裂纹的相互作用. 物理学报, 2012, 61(8): 086103. doi: 10.7498/aps.61.086103
    [14] 张曾, 张荣, 谢自力, 刘斌, 修向前, 李弋, 傅德颐, 陆海, 陈鹏, 韩平, 郑有炓, 汤晨光, 陈涌海, 王占国. 厚度对MOCVD生长InN薄膜位错特性与光电性质的影响. 物理学报, 2009, 58(5): 3416-3420. doi: 10.7498/aps.58.3416
    [15] 陈贤淼, 宋申华. 高温塑性变形引起的P非平衡晶界偏聚. 物理学报, 2009, 58(13): 183-S188. doi: 10.7498/aps.58.183
    [16] 张 杨, 张建华, 文玉华, 朱梓忠. 含圆孔纳米薄膜在拉伸加载下变形机理的原子级模拟研究. 物理学报, 2008, 57(11): 7094-7099. doi: 10.7498/aps.57.7094
    [17] 孙 蔚, 王清周, 韩福生. 石墨颗粒/CuAlMn形状记忆合金复合材料中的位错内耗峰. 物理学报, 2007, 56(2): 1020-1026. doi: 10.7498/aps.56.1020
    [18] 江慧丰, 张青川, 陈学东, 范志超, 陈忠家, 伍小平. 位错与溶质原子间动态相互作用的数值模拟研究. 物理学报, 2007, 56(6): 3388-3392. doi: 10.7498/aps.56.3388
    [19] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化. 物理学报, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [20] 王敬丰, 柳 林, 蒲 健, 肖建中. 大块金属玻璃Zr41Ti14Cu12.5Ni10Be22.5的流变行为研究. 物理学报, 2004, 53(6): 1916-1922. doi: 10.7498/aps.53.1916
计量
  • 文章访问数:  4789
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-22
  • 修回日期:  2015-02-28
  • 刊出日期:  2015-07-05

/

返回文章
返回