搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电荷俘获存储器数据保持特性第一性原理研究

蒋先伟 鲁世斌 代广珍 汪家余 金波 陈军宁

引用本文:
Citation:

电荷俘获存储器数据保持特性第一性原理研究

蒋先伟, 鲁世斌, 代广珍, 汪家余, 金波, 陈军宁

Research of data retention for charge trapping memory by first-principles

Jiang Xian-Wei, Lu Shi-Bin, Dai Guang-Zhen, Wang Jia-Yu, Jin Bo, Chen Jun-Ning
PDF
导出引用
  • 本文研究HfO2掺入Al替位Hf杂质和氧空位共同掺杂对电荷俘获型存储器存储特性的影响. HfO2作为高介电常数材料由于具有缩小器件尺寸、提高器件性能等优势, 被广泛用于CTM的俘获层. 采用MS和VASP研究了HfO2俘获层中掺入Al对氧空位形成能的影响. 同时计算了两种缺陷在不同距离下的相互作用能. 计算结果表明在HfO2中掺入Al使得氧空位的形成能降低, 并且三配位氧空位的形成能比四配位氧空位的形成能降低的更多. 通过研究Al和三配位氧空位两种缺陷间不同距离的三种情况, 计算结果表明当缺陷间距为2.107 Å时, 体系的电荷俘获能最大; 量子态数最多; 布居数最小、Al–O键最长. 通过研究三种体系写入空穴后键长的变化, 得出当缺陷间距为2.107 Å时, 写入空穴后体系的Al–O键长变化最小. 以上研究结果表明, 掺入Al后可以有效提高电荷俘获型存储器的数据保持能力. 因而本文的研究为改善电荷俘获型存储器数据保持特性提供一定的理论指导.
    In this paper, the influence of charge trapping memory storage feature is studied by doping the substitutional impurity Al and introducing oxygen vacancy within HfO2. HfO2 is widely used in trapping layer of charge trapping memory, for it belongs to high dielectric constant materials with the abilities to shrink the device size and improve the device performance. Materials studio and Vienna Ab-initio Simulation Package are used to investigate the influence of doping Al on the formation of the oxygen vacancy in HfO2 as a trapping layer. At the same time, the interaction energy of two defects at different distances is calculated. Results show that doping the substitutional impurity Al reduces the formation energy of oxygen vacancies in HfO2, and the reduced formation energy of the three-fold-coordinated O vacancy is larger than that of the four-fold-coordinated O vacancy. After having studied three different defect distances between the substitutional impurity Al and the three-fold-coordinated O vacancy, the results indicate that the system acquires the largest charge trapping energy, the most of quantum states, the smallest population number, and the longest Al–O bond length when the distance between the defects is 2.107 Å. Studying the bond length changes of the three systems after writing a hole, we obtain a result that the change of Al–O bond length is the smallest when the distance between defects is 2.107 Å. In conclusion, the data retention in the trapping layer of monoclinic HfO2 can be improved by doping the substitutional impurity Al. This work will provide a theoretical guidance for the performance improvement in the data retention of charge trapping memory.
      通信作者: 蒋先伟, jiangxianwei1983@126.com
    • 基金项目: 国家自然科学基金青年项目(批准号: 21201052)、安徽省高校省级自然科学研究重点项目(批准号: KJ2014A208)、安徽高校自然科学研究重点项目(批准号: KJ2013A224)和安徽高校省级优秀青年重点项目(批准号: 2013SQRL065ZD)资助的课题.
      Corresponding author: Jiang Xian-Wei, jiangxianwei1983@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21201052), the Key University Science Research Project of Anhui Province, China (Grant No. KJ2014A208), the Key University Science Research Project of Anhui Province, China (Grant No. KJ2013A224), and the Universities Outstanding Youth of Key Projects, Anhui Province (Grant No. 2013SQRL065ZD).
    [1]

    Tiwari S, Rana F, Hanafi H, Hartstein A, Crabbé E F, Chan K 1996 Appl. Phys. Lett. 68 1377

    [2]

    Bachhofer H, Reisinger H, Bertagnolli E, Philipsborn H 2001 J. Appl. Phys. 89 2791

    [3]

    Ptersen M, Roizin Y 2006 Appl. Phys. Lett. 89 053511

    [4]

    Tsai C Y, Chin A 2012 IEEE Trans. Electr. Dev. 59 252

    [5]

    Jiang D D 2012 Ph. D. Dissertation (Hefei: Anhui University) (in Chinese) [姜丹丹 2012 博士学位论文 (合肥: 安徽大学)]

    [6]

    Tsai C Y, Lee T H, Chin A 2011 IEEE Electron Dev. Lett. 32 381

    [7]

    You H C, Hsu T H, Ko F H, Huang J W, Yang W L, Lei T F 2006 IEEE Electron Dev. Lett. 27 653

    [8]

    Maikap S, Wang T Y, Tzeng P J, Lin C H, Tien T C, Lee L S, Yang J R, Tsai M J 2007 Appl. Phys. Lett. 90 262901

    [9]

    Chen W, Liu W J, Zhang M, Ding S J, Zhang D W, Li M F 2007 Appl. Phys. Lett. 91 022908

    [10]

    Tan Y N, Chim W K, Choi W K, Joo M S, Ng T H, Cho B J 2004 International Electron Devices Meeting CA USA, San Francisco, December 13-15, 2004, p889

    [11]

    Tan Y N, Chim W K, Choi W K, Joo M S, Cho B J 2006 IEEE Trans. Electr. Dev. 53 654

    [12]

    Tan Y N, Chim W K, Cho B J, Choi W K 2004 IEEE Trans. Electr. Dev. 51 1143

    [13]

    Chen F H, Pan T M, Chiu F C 2011 IEEE Trans. Electr. Dev. 58 3847

    [14]

    Grillo M E, Elliott S D, Rodríguez J, Añez R, Coll D S, Suhane A, Breuil L, Arreghini A, Degraeve R, Shariq A, Beyer V, Czernohorsky M 2014 Comp. Mater. Sci. 81 178

    [15]

    Zhang W, Hou Z F 2014 J. Appl. Phys. 115 124104

    [16]

    Hou Z F, Gong X G, Li Q 2009 J. Appl. Phys. 106 014104

    [17]

    Luo J, Lu J L, Zhao H P, Dai Y H, Liu Q, Yang J, Jiang X W, Xu H F 2014 Phys. Stat. Sol. B 251 1212

    [18]

    Tang F L, Liu R, Xue H T, Lu W J, Feng Y D, Rui Z Y, Huang M 2014 Chin. Phys. B 23 077301

    [19]

    Wang L G, Xiong Y, Xiao W, Cheng L, Du J, Tu H, Walle A D 2014 Appl. Phys. Lett. 104 201903

    [20]

    Tsai P H, Chang-Liao K S, Liu C Y, Wang T K, Tzeng P J, Lin C H, Lee L S, Tsai M J 2008 IEEE Electron Dev. Lett. 29 265

    [21]

    Zhu W J, Tamagawa T, Gibson M, Furukawa T, Ma T P 2002 IEEE Electron Dev.Lett. 23 649

    [22]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [25]

    Lee C K, Cho E, Lee H S, Hwang C, Han S 2008 Phys. Rev. B 78 012102

    [26]

    Wang J Y, Zhao Y Y, Xu J B, Dai Y H 2014 Acta Phys. Sin. 63 053101 (in Chinese) [汪家余, 赵远洋, 徐建彬, 代月花 2014 物理学报 63 053101]

    [27]

    Foster A S, Gejo F Lopez, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117

    [28]

    Zhu H, Tang C, Fonseca L R C, Ramprasad R 2012 J. Mater. Sci. 47 7399

    [29]

    Zhang P X, Chen J H, Wei Q 2012 Molecular Simulation and Calculation for Doped Material (Beijing: Science Press) p33 (in Chinese) [张培新,陈建华,魏群 2012 掺杂材料分子模拟与计算(北京:科学出版社)第33页]

    [30]

    Zhu C X, Huo Z L, Xu Z G, Zhang M H, Wang Q, Liu J, Long S B, Liu M 2010 Appl. Phys. Lett. 97 253503

    [31]

    Deng N, Pang H, Wu W 2014 Chin. Phys. B 23 107306

  • [1]

    Tiwari S, Rana F, Hanafi H, Hartstein A, Crabbé E F, Chan K 1996 Appl. Phys. Lett. 68 1377

    [2]

    Bachhofer H, Reisinger H, Bertagnolli E, Philipsborn H 2001 J. Appl. Phys. 89 2791

    [3]

    Ptersen M, Roizin Y 2006 Appl. Phys. Lett. 89 053511

    [4]

    Tsai C Y, Chin A 2012 IEEE Trans. Electr. Dev. 59 252

    [5]

    Jiang D D 2012 Ph. D. Dissertation (Hefei: Anhui University) (in Chinese) [姜丹丹 2012 博士学位论文 (合肥: 安徽大学)]

    [6]

    Tsai C Y, Lee T H, Chin A 2011 IEEE Electron Dev. Lett. 32 381

    [7]

    You H C, Hsu T H, Ko F H, Huang J W, Yang W L, Lei T F 2006 IEEE Electron Dev. Lett. 27 653

    [8]

    Maikap S, Wang T Y, Tzeng P J, Lin C H, Tien T C, Lee L S, Yang J R, Tsai M J 2007 Appl. Phys. Lett. 90 262901

    [9]

    Chen W, Liu W J, Zhang M, Ding S J, Zhang D W, Li M F 2007 Appl. Phys. Lett. 91 022908

    [10]

    Tan Y N, Chim W K, Choi W K, Joo M S, Ng T H, Cho B J 2004 International Electron Devices Meeting CA USA, San Francisco, December 13-15, 2004, p889

    [11]

    Tan Y N, Chim W K, Choi W K, Joo M S, Cho B J 2006 IEEE Trans. Electr. Dev. 53 654

    [12]

    Tan Y N, Chim W K, Cho B J, Choi W K 2004 IEEE Trans. Electr. Dev. 51 1143

    [13]

    Chen F H, Pan T M, Chiu F C 2011 IEEE Trans. Electr. Dev. 58 3847

    [14]

    Grillo M E, Elliott S D, Rodríguez J, Añez R, Coll D S, Suhane A, Breuil L, Arreghini A, Degraeve R, Shariq A, Beyer V, Czernohorsky M 2014 Comp. Mater. Sci. 81 178

    [15]

    Zhang W, Hou Z F 2014 J. Appl. Phys. 115 124104

    [16]

    Hou Z F, Gong X G, Li Q 2009 J. Appl. Phys. 106 014104

    [17]

    Luo J, Lu J L, Zhao H P, Dai Y H, Liu Q, Yang J, Jiang X W, Xu H F 2014 Phys. Stat. Sol. B 251 1212

    [18]

    Tang F L, Liu R, Xue H T, Lu W J, Feng Y D, Rui Z Y, Huang M 2014 Chin. Phys. B 23 077301

    [19]

    Wang L G, Xiong Y, Xiao W, Cheng L, Du J, Tu H, Walle A D 2014 Appl. Phys. Lett. 104 201903

    [20]

    Tsai P H, Chang-Liao K S, Liu C Y, Wang T K, Tzeng P J, Lin C H, Lee L S, Tsai M J 2008 IEEE Electron Dev. Lett. 29 265

    [21]

    Zhu W J, Tamagawa T, Gibson M, Furukawa T, Ma T P 2002 IEEE Electron Dev.Lett. 23 649

    [22]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [25]

    Lee C K, Cho E, Lee H S, Hwang C, Han S 2008 Phys. Rev. B 78 012102

    [26]

    Wang J Y, Zhao Y Y, Xu J B, Dai Y H 2014 Acta Phys. Sin. 63 053101 (in Chinese) [汪家余, 赵远洋, 徐建彬, 代月花 2014 物理学报 63 053101]

    [27]

    Foster A S, Gejo F Lopez, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117

    [28]

    Zhu H, Tang C, Fonseca L R C, Ramprasad R 2012 J. Mater. Sci. 47 7399

    [29]

    Zhang P X, Chen J H, Wei Q 2012 Molecular Simulation and Calculation for Doped Material (Beijing: Science Press) p33 (in Chinese) [张培新,陈建华,魏群 2012 掺杂材料分子模拟与计算(北京:科学出版社)第33页]

    [30]

    Zhu C X, Huo Z L, Xu Z G, Zhang M H, Wang Q, Liu J, Long S B, Liu M 2010 Appl. Phys. Lett. 97 253503

    [31]

    Deng N, Pang H, Wu W 2014 Chin. Phys. B 23 107306

  • [1] 王泽普, 付念, 于涵, 徐晶威, 何祺, 郑树凯, 丁帮福, 闫小兵. 铟掺杂钨位增强钨酸铋氧空位光催化效率. 物理学报, 2019, 68(21): 217102. doi: 10.7498/aps.68.20191010
    [2] 代广珍, 姜永召, 倪天明, 刘鑫, 鲁麟, 刘琦. 变组分Al对HfO2阻变特性影响: 第一性原理研究. 物理学报, 2019, 68(11): 113101. doi: 10.7498/aps.68.20181995
    [3] 何金云, 彭代江, 王燕舞, 龙飞, 邹正光. 具有氧空位BixWO6(1.81≤ x≤ 2.01)的第一性原理计算和光催化性能研究. 物理学报, 2018, 67(6): 066801. doi: 10.7498/aps.67.20172287
    [4] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究. 物理学报, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [5] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [6] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [7] 蒋先伟, 代广珍, 鲁世斌, 汪家余, 代月花, 陈军宁. Al掺杂对HfO2俘获层可靠性影响第一性原理研究. 物理学报, 2015, 64(9): 091301. doi: 10.7498/aps.64.091301
    [8] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算. 物理学报, 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [9] 汪家余, 代月花, 赵远洋, 徐建彬, 杨菲, 代广珍, 杨金. 电荷俘获存储器的过擦现象. 物理学报, 2014, 63(20): 203101. doi: 10.7498/aps.63.203101
    [10] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [11] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究. 物理学报, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [12] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [13] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响. 物理学报, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [14] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算. 物理学报, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [15] 孙运斌, 张向群, 李国科, 杨海涛, 成昭华. 氧空位对Co掺杂TiO2稀磁半导体中杂质分布和磁交换的影响. 物理学报, 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [16] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究. 物理学报, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [17] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究. 物理学报, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [18] 侯清玉, 张 跃, 张 涛. 高氧空位简并锐钛矿TiO2半导体电子寿命的第一性原理研究. 物理学报, 2008, 57(5): 3155-3159. doi: 10.7498/aps.57.3155
    [19] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [20] 阎志军, 王印月, 徐 闰, 蒋最敏. 电子束蒸发制备HfO2高k薄膜的结构特性. 物理学报, 2004, 53(8): 2771-2774. doi: 10.7498/aps.53.2771
计量
  • 文章访问数:  5206
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-24
  • 修回日期:  2015-07-03
  • 刊出日期:  2015-11-05

/

返回文章
返回