搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层状二硫化钼研究进展

顾品超 张楷亮 冯玉林 王芳 苗银萍 韩叶梅 张韩霞

引用本文:
Citation:

层状二硫化钼研究进展

顾品超, 张楷亮, 冯玉林, 王芳, 苗银萍, 韩叶梅, 张韩霞

Recent progress of two-dimensional layered molybdenum disulfide

Gu Pin-Chao, Zhang Kai-Liang, Feng Yu-Lin, Wang Fang, Miao Yin-Ping, Han Ye-Mei, Zhang Han-Xia
PDF
导出引用
  • 近年来, 层状二硫化钼由于其特殊的类石墨烯结构和独特的物理化学性质已成为国内外研究的热点. 本文综述了层状二硫化钼的物理结构、价带结构和光学性质; 介绍了制备方法, 包括生长制备和剥离制备. 生长制备的原料包括四硫代钼酸铵((NH4)2MoS4)、钼(Mo)和三氧化钼(MoO3)等. 剥离制备包括微机械剥离、液相超声法、锂离子插层法和电化学锂离子插层法等. 归纳了层状二硫化钼在场效应晶体管、传感器和存储方面的应用, 展望了层状二硫化钼的研究前景.
    Recently, two-dimensional (2D) layered molybdenum disulfide (MoS2) has attracted great attention because of its graphene-like structure and unique physical and chemical properties. In this paper, physical structure, band gap structure, and optical properties of MoS2 are summarized. MoS2 is semiconducting and composed of covalently bonded sheets held together by weak van der Waals force. In each MoS2 layer, a layer of molybdenum (Mo) atoms is sandwiched between two layers of sulfur (S) atoms. There are three types of MoS2 compounds, including 1T MoS2, 2H MoS2, and 3R MoS2. As the number of layers decreases, the bad gap becomes larger. The bad gap transforms from indirect to direct as MoS2 is thinned to a monolayer. Changes of band gap show a great potential in photoelectron. Preparation methods of 2D MoS2 are reviewed, including growth methods and exfoliation methods. Ammonium thiomolybdate (NH4)2MoS4, elemental molybdenum Mo and molybdenum trioxide MoO3 are used to synthesize 2D MoS2 by growth methods. (NH4)2MoS4 is dissolved in a solution and then coated on a substrate. (NH4)2MoS4 is decomposed into MoS2 after annealing at a high temperature. Mo is evaporated onto a substrate, and then sulfurized into MoS2. MoO3 is most used to synthesize MoS2 on different substrates by a chemical vapor deposition or plasma-enhanced chemical vapor deposition. Other precursors like Mo(CO)6, MoS2 and MoCl5 are also used for MoS2 growth. For the graphene-like structure, monolayer MoS2 can be exfoliated from bulk MoS2. Exfoliation methods include micromechanical exfoliation, liquid exfoliation, lithium-based intercalation and electrochemistry lithium-based intercalation. For micromechanical exfoliation, the efficiency is low and the sizes of MoS2 flakes are small. For liquid exfoliation, it is convenient for operation to obtain mass production, but the concentration of monolayer MoS2 is low. For lithium-based intercalation, the yield of monolayer MoS2 is high while it takes a long time and makes 2H MoS2 transform to 1T MoS2 in this process. For electrochemistry lithium-based intercalation, this method saves more time and achieves higher monolayer MoS2 yield, and annealing makes 1T MoS2 back to 2H MoS2. The applications of 2D MoS2 in field-effect transistors, sensors and memory are discussed. On-off ratio field effect transistor based on MoS2 has field-effect mobility of several hundred cm2V-1-1 and on/off ratio of 108 theoretically.
      通信作者: 张楷亮, kailiang_zhang@163.com
    • 基金项目: 国家自然科学基金(批准号: 61274113, 11204212, 61404091)、教育部新世纪优秀人才支持计划(批准号: NCET-11-1064)、天津市科技计划(批准号: 13JCYBJC15700, 13JCZDJC26100, 14JCZDJC31500, 14JCQNJC00800)和天津市高等学校科技发展基金(批准号: 20100703, 20130701, 20130702)资助的课题.
      Corresponding author: Zhang Kai-Liang, kailiang_zhang@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274113, 11204212, 61404091), the Program for New Century Excellent Talents in University, China (Grant No. NCET-11-1064), the Tianjin Natural Science Foundation, China (Grant Nos. 13JCYBJC15700, 13JCZDJC26100, 14JCZDJC31500, 14JCQNJC00800), and the Tianjin Science and Technology Developmental Funds of Universities and Colleges, China (Grant Nos. 20100703, 20130701, 20130702).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva, Firsov A A 2004 Science 306 666

    [2]

    Ataca C, Sahin H, Ciraci S 2012 J. Phys. Chem. 116 8983

    [3]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Natl. Acad. Sci. USA 102 10451

    [4]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [5]

    Wang Q H, Kourosh-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 700

    [6]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M W, Chhowalla M 2011 Nano Lett. 11 5111

    [7]

    Cheng Y C, Schwingenschlgl U 2014 MoS2: A First-Principles Perspective (Berlin: Springer International Publishing) p106

    [8]

    Mak K F, Lee C, Hone J, Shan J, Tony F 2010 Phys. Rev. Lett. 105 136805

    [9]

    Sandomirski V B 1967 Soviet Phys. Jetp 25 101

    [10]

    Ye M X, Winslow D, Zhang D Y, Pandey R, Yap Y K 2015 Photonics 2 288

    [11]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [12]

    Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y M, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538

    [13]

    Shi Y M, Zhou W, Lu A Y, Fang W J, Lee Y H, Hsu A L, Kim S M, Kim K K, Yang H Y, Li L J, Idrobo J C, Kong J 2012 Nano Lett. 12 2784

    [14]

    George A S, Mutlu Z, Ionescu R, Wu R J, Jeong J S, Bay H H, Chai Y, Mkhpyan K A, Ozkan M, Ozkan C S 2014 Adv. Funct. Mater. 24 7461

    [15]

    Zhan Y J, Liu Z, Najmaei S, Ajayan P, Lou J 2012 Small 8 966

    [16]

    Laskar M, Ma L, Kannappan S, Park P S, Krishnamoorthy S, Nath D, Lu W, Wu Y Y, Rajan S 2013 Appl. Phys. Lett. 102 252108

    [17]

    Tao J G, Chai J W, Lu X, Wong L M, Wong T I, Pan J S, Xiong Q H, Chi D Z, Wang S J 2015 Nanoscale 7 2497

    [18]

    Balendhran S, Ou J, Bhaskaran M, Sriram S, Ippolito S, Vasic Z, Kats E, Bhargava S, Zhuiykov S, Kalantar Zadeh K 2012 Nanoscale 4 461

    [19]

    Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320

    [20]

    Ji Q Q, Zhang Y F, Gao T, Zhang Y, Ma D L, Liu M G, Chen Y B, Qiao X F, Tan P H, Kan M, Feng J, Sun Q, Liu Z F 2013 Nano Lett. 13 3870

    [21]

    Shi J P, Ma D L, Han G F, Zhang Y, Ji Q Q, Gao T, Sun J Y, Song X J, Li C, Zhang Y S, Lang X Y, Zhang Y F, Liu Z F 2014 ACS Nano 8 10196

    [22]

    Feng Y L, Zhang K L, Wang F, Liu Z W, Fang M X, Cao R R, Miao Y P, Yang Z C, Han Y M, Song Z T, Wong H S P 2015 ACS Appl. Mat. Interfaces 7 22587

    [23]

    Kumar V K, Dhar S, Choudhury T H, Shivashankar S A, Raghavan S 2015 Nanoscale 7 7802

    [24]

    Coleman J, Lotya M, O'Neill A, Bergin S, King P, Khan U, Young K, Gaucher A, De S, Smith R, Shvets I, Arora S, Stanton G, Kim H, Lee K, Kim G T, Duesgerg G, Hallam T, Boland J, Wang J J, Donegan J, Grunlan J, Moriarty G, Shmeliov A, Nicholls R, Perkins J, Grieveson E, Theuwissen K, McComb D, Nellist P, Nicolosi V 2011 Science 331 568

    [25]

    Joensen P, Frindt R F, Morrison S R 1986 Mater. Res. Bull. 21 457

    [26]

    Natalia I, Denis O D, Vitaliy A 2014 Turk. J. Phys. 38 478

    [27]

    Zeng Z Y, Yin Z Y, Huang X, Li H, He Q Y, Lu G, Boey F, Zhang H 2011 Angew. Chem. 50 11093

    [28]

    Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385

    [29]

    Sarkar D, Liu W, Xie X J, Anselmo A C, Mitragoti S, Banerjee K 2014 ACS Nano 8 3992

    [30]

    Liu B L, Chen L, Liu G, Abbas A N, Fathi M, Zhou C 2014 ACS Nano 8 5304

    [31]

    Chen H, Nam H, Wi S, Preissnitz G, Gunawan I M, Liang X G 2014 ACS Nano 8 4023

    [32]

    Kang J H, Liu W, Banerjee K 2014 Appl. Phys. Lett. 104 093106

    [33]

    Chuang S, Battaglia C, Azcatl A, McDonnell S, Kang J S, Yin X, Tosun M, Kapadia R, Fang H, Wallace R M, Javey A 2014 Nano Lett. 14 1337

    [34]

    Yang L, Majumdar K, Liu H, Du Y, Wu H, Hatzistergos M, Hung P Y, Tieckelman R, Tsai W, Hobbs C, Ye P D 2014 Nano Lett. 14 6275

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva, Firsov A A 2004 Science 306 666

    [2]

    Ataca C, Sahin H, Ciraci S 2012 J. Phys. Chem. 116 8983

    [3]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Natl. Acad. Sci. USA 102 10451

    [4]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [5]

    Wang Q H, Kourosh-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 700

    [6]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M W, Chhowalla M 2011 Nano Lett. 11 5111

    [7]

    Cheng Y C, Schwingenschlgl U 2014 MoS2: A First-Principles Perspective (Berlin: Springer International Publishing) p106

    [8]

    Mak K F, Lee C, Hone J, Shan J, Tony F 2010 Phys. Rev. Lett. 105 136805

    [9]

    Sandomirski V B 1967 Soviet Phys. Jetp 25 101

    [10]

    Ye M X, Winslow D, Zhang D Y, Pandey R, Yap Y K 2015 Photonics 2 288

    [11]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [12]

    Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y M, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538

    [13]

    Shi Y M, Zhou W, Lu A Y, Fang W J, Lee Y H, Hsu A L, Kim S M, Kim K K, Yang H Y, Li L J, Idrobo J C, Kong J 2012 Nano Lett. 12 2784

    [14]

    George A S, Mutlu Z, Ionescu R, Wu R J, Jeong J S, Bay H H, Chai Y, Mkhpyan K A, Ozkan M, Ozkan C S 2014 Adv. Funct. Mater. 24 7461

    [15]

    Zhan Y J, Liu Z, Najmaei S, Ajayan P, Lou J 2012 Small 8 966

    [16]

    Laskar M, Ma L, Kannappan S, Park P S, Krishnamoorthy S, Nath D, Lu W, Wu Y Y, Rajan S 2013 Appl. Phys. Lett. 102 252108

    [17]

    Tao J G, Chai J W, Lu X, Wong L M, Wong T I, Pan J S, Xiong Q H, Chi D Z, Wang S J 2015 Nanoscale 7 2497

    [18]

    Balendhran S, Ou J, Bhaskaran M, Sriram S, Ippolito S, Vasic Z, Kats E, Bhargava S, Zhuiykov S, Kalantar Zadeh K 2012 Nanoscale 4 461

    [19]

    Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320

    [20]

    Ji Q Q, Zhang Y F, Gao T, Zhang Y, Ma D L, Liu M G, Chen Y B, Qiao X F, Tan P H, Kan M, Feng J, Sun Q, Liu Z F 2013 Nano Lett. 13 3870

    [21]

    Shi J P, Ma D L, Han G F, Zhang Y, Ji Q Q, Gao T, Sun J Y, Song X J, Li C, Zhang Y S, Lang X Y, Zhang Y F, Liu Z F 2014 ACS Nano 8 10196

    [22]

    Feng Y L, Zhang K L, Wang F, Liu Z W, Fang M X, Cao R R, Miao Y P, Yang Z C, Han Y M, Song Z T, Wong H S P 2015 ACS Appl. Mat. Interfaces 7 22587

    [23]

    Kumar V K, Dhar S, Choudhury T H, Shivashankar S A, Raghavan S 2015 Nanoscale 7 7802

    [24]

    Coleman J, Lotya M, O'Neill A, Bergin S, King P, Khan U, Young K, Gaucher A, De S, Smith R, Shvets I, Arora S, Stanton G, Kim H, Lee K, Kim G T, Duesgerg G, Hallam T, Boland J, Wang J J, Donegan J, Grunlan J, Moriarty G, Shmeliov A, Nicholls R, Perkins J, Grieveson E, Theuwissen K, McComb D, Nellist P, Nicolosi V 2011 Science 331 568

    [25]

    Joensen P, Frindt R F, Morrison S R 1986 Mater. Res. Bull. 21 457

    [26]

    Natalia I, Denis O D, Vitaliy A 2014 Turk. J. Phys. 38 478

    [27]

    Zeng Z Y, Yin Z Y, Huang X, Li H, He Q Y, Lu G, Boey F, Zhang H 2011 Angew. Chem. 50 11093

    [28]

    Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385

    [29]

    Sarkar D, Liu W, Xie X J, Anselmo A C, Mitragoti S, Banerjee K 2014 ACS Nano 8 3992

    [30]

    Liu B L, Chen L, Liu G, Abbas A N, Fathi M, Zhou C 2014 ACS Nano 8 5304

    [31]

    Chen H, Nam H, Wi S, Preissnitz G, Gunawan I M, Liang X G 2014 ACS Nano 8 4023

    [32]

    Kang J H, Liu W, Banerjee K 2014 Appl. Phys. Lett. 104 093106

    [33]

    Chuang S, Battaglia C, Azcatl A, McDonnell S, Kang J S, Yin X, Tosun M, Kapadia R, Fang H, Wallace R M, Javey A 2014 Nano Lett. 14 1337

    [34]

    Yang L, Majumdar K, Liu H, Du Y, Wu H, Hatzistergos M, Hung P Y, Tieckelman R, Tsai W, Hobbs C, Ye P D 2014 Nano Lett. 14 6275

计量
  • 文章访问数:  11825
  • PDF下载量:  1528
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-13
  • 修回日期:  2015-09-16
  • 刊出日期:  2016-01-05

层状二硫化钼研究进展

  • 1. 天津理工大学电子信息工程学院, 天津市薄膜电子与通信器件重点验室, 天津 300384
  • 通信作者: 张楷亮, kailiang_zhang@163.com
    基金项目: 国家自然科学基金(批准号: 61274113, 11204212, 61404091)、教育部新世纪优秀人才支持计划(批准号: NCET-11-1064)、天津市科技计划(批准号: 13JCYBJC15700, 13JCZDJC26100, 14JCZDJC31500, 14JCQNJC00800)和天津市高等学校科技发展基金(批准号: 20100703, 20130701, 20130702)资助的课题.

摘要: 近年来, 层状二硫化钼由于其特殊的类石墨烯结构和独特的物理化学性质已成为国内外研究的热点. 本文综述了层状二硫化钼的物理结构、价带结构和光学性质; 介绍了制备方法, 包括生长制备和剥离制备. 生长制备的原料包括四硫代钼酸铵((NH4)2MoS4)、钼(Mo)和三氧化钼(MoO3)等. 剥离制备包括微机械剥离、液相超声法、锂离子插层法和电化学锂离子插层法等. 归纳了层状二硫化钼在场效应晶体管、传感器和存储方面的应用, 展望了层状二硫化钼的研究前景.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回