搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可调谐复振幅滤波器的超长焦深矢量光场

王吉明 赫崇君 刘友文 杨凤 田威 吴彤

引用本文:
Citation:

基于可调谐复振幅滤波器的超长焦深矢量光场

王吉明, 赫崇君, 刘友文, 杨凤, 田威, 吴彤

The focused vectorial fields with ultra-long depth of focus generated by the tunable complex filter

Wang Ji-Ming, He Chong-Jun, Liu You-Wen, Yang Feng, Tian Wei, Wu Tong
PDF
导出引用
  • 根据矢量光场衍射积分理论和离散复振幅光瞳滤波原理, 通过一种由双/2波片和离散复振幅滤波器组成的可调谐复振幅滤波器, 研究了大数值孔径下超长焦深聚焦矢量光场的构建与调控. 给出了一个六环带区的离散复振幅滤波器, 对入射光场的偏振态、振幅滤波和相位滤波三者进行同步优化, 获得了焦深接近10的三维平顶光场; 通过调控双/2波片夹角来改变聚焦光场的矢量化结构, 使之在光针场、平顶光场、光管场及中间结构光场之间交替变化. 研究结果揭示了入射光场矢量化结构演化与聚焦光场矢量化结构变换之间的关系, 解决了获取动态的、可调控的超长焦深聚焦光场的问题. 两种基本的聚焦光场光针场、光管场的独自使用或三维平顶光场的调和使用, 将会在光学显微、光学微纳操控以及光学精细加工领域获得重要应用.
    According to the diffraction integral theory of vector field and the pupil filtering method with a discrete complex amplitude, we present a tunable pupil filter to achieve and manipulate the focused vector fields with ultra-long depth of focus. The filter consists of a polarization rotator with two /2 wave plates and a discrete complex amplitude filter with six zones. Amplitude transmissions of these zones are different and increase along the radial direction. And every two adjacent transmitted zones have the opposed phases 0 and . With optimized cylindrical polarization (0 =52) and discrete amplitude, the generalized cylindrical vector field can be tightly focused into a three-dimensional (3D) flat-top field with an extended depth of focus (~10 ) by a high numerical aperture lens. For the main outermost zone and the other five inner zones, we analyze the intensity distributions of the three polarized components and the total polarized component in the focal region. We find that the axially and azimuthally polarized components are the major contributors. The outermost zone offers the central field of the focused field while the other five zones affect the side lobe more obviously. Through adjusting the included angle between the double wave plates, we can change the polarization states of the incident vector field and alter the structures of the focused fields among the 3D flat-top focused field, needle-like field, tube-like field and the other fields with intermediate form. Result obtained is superior to that of the past research for the adjustable freedom between these forms, and it reveals the dynamic relation between the evolved vectorial form of incident field and the vector structure of the focused field. Our work paves a way to achieve the controlled dynamical focused field with a long depth of focus. The needle-like field, tube-like field and the well-matched 3D flat-top focused field will meet the demand of applications in optical microscope, optical micro-manipulating, optical micromachining and so on.
      Corresponding author: Wang Ji-Ming, jimingw@nuaa.edu.cn;ywliu@nuaa.edu.cn ; Liu You-Wen, jimingw@nuaa.edu.cn;ywliu@nuaa.edu.cn
    • Funds: Project supported by the NUAA Fundamental Research Funds, China (Grant No. NZ2013206).
    [1]

    Zhan Q W 2009 Adv. Opt. Photon. 1 1

    [2]

    Beckley A M, Brown T G 2010 Opt. Express 18 10777

    [3]

    Wang X L, Ding J, Ni W J, Guo C S, Wang H T 2007 Opt. Lett. 32 3549

    [4]

    Youngworth K S, Brown T G 2000 Opt. Express 7 77

    [5]

    Zhan Q W, Leger J R 2002 Opt. Express 10 324

    [6]

    Dorn R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901

    [7]

    Chen W B, Zhan Q W 2006 Opt. Commun. 265 411

    [8]

    Wang H F, Shi L P, Luk'yanchuk B, Sheppard C, Chong C T 2008 Nat. Photon. 2 501

    [9]

    Wang J M, Chen W B, Zhan Q W 2010 Opt. Express 18 21965

    [10]

    Du F R, Zhou Z H, Tan Q F, Yang C X, Zhang X Q, Zhu L Q 2013 Chin. Phys. B 22 064202

    [11]

    Zhou Z H, Zhu L Q 2015 Chin. Phys. B 24 028704

    [12]

    Liu J L, Chen Z Y, Zhang L, Pu J X 2015 Acta Phys. Sin. 64 064201 (in Chinese) [刘绩林, 陈子阳, 张磊, 蒲继雄 2015 物理学报 64 064201]

    [13]

    Chang Q, Yang Y F, He Y, Liu H G, Liu J 2013 Acta Phys. Sin. 62 104202 (in Chinese) [常强, 杨艳芳, 何英, 刘海港, 刘键 2013 物理学报 62 104202]

    [14]

    Han W, Yang Y F, Cheng W, Zhan Q W 2013 Opt. Express 21 20692

    [15]

    Yun M J, Liu L R, Sun J F, Liu D A 2005 J. Opt. Soc. Am. A 22 272

    [16]

    Wang J M, Liu L R, Yun M J, Liu D A, Liu X M 2005 J. Opt. A 7 748

    [17]

    Yun M J, Wan Y, Kong W J, Wang M, Liu J H, Liang W 2008 Acta Phys. Sin. 57 194 (in Chinese) [云茂金, 万勇, 孔伟金, 王美, 刘均海, 梁伟 2008 物理学报 57 194]

    [18]

    Kyoko K, Kyosuke S, Susumu N 2010 Opt. Express 18 4518

    [19]

    Jabbour T, Kuebler S 2006 Opt. Express 14 1033

    [20]

    Wang J M, Liu Q L, Liu Y W, Chen W B, Zhan Q W 2011 Proc. SPIE 8097 809722

    [21]

    Sheppard C J R, Mehta S 2012 Opt. Express 20 27212

    [22]

    Chen L L, Wang J M, He C J, Liu Y W, Yun M J, Kong W J 2013 J. Mod. Opt. 60 391

    [23]

    Guo H M, Weng X Y, Jiang M, Zhao Y H, Sui G R, Hu Q, Wang Y, Zhuang S L 2013 Opt. Express 21 5363

    [24]

    Lin J, Chen R, Yu H C 2014 J. Opt. Soc. Am. A 31 1395

    [25]

    Wang J M, Chen W B, Zhan Q W 2011 Opt. Commun. 284 2668

    [26]

    Huang K, Shi P, Kang X L, Zhang X, Li Y P 2010 Opt. Lett. 35 965

    [27]

    Weng X Y, Guo H M, Sui G R, Hu Q, Zheng J H, Wang Y, Zhuang S L 2013 Opt. Commun. 311 117

    [28]

    Nie Z G, Shi G, Zhang X R, Wang Y X, Song Y L 2014 Opt. Commun. 331 87

    [29]

    Liu T, Tan J B, Liu J, Wang H G 2013 Opt. Lett. 38 2742

  • [1]

    Zhan Q W 2009 Adv. Opt. Photon. 1 1

    [2]

    Beckley A M, Brown T G 2010 Opt. Express 18 10777

    [3]

    Wang X L, Ding J, Ni W J, Guo C S, Wang H T 2007 Opt. Lett. 32 3549

    [4]

    Youngworth K S, Brown T G 2000 Opt. Express 7 77

    [5]

    Zhan Q W, Leger J R 2002 Opt. Express 10 324

    [6]

    Dorn R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901

    [7]

    Chen W B, Zhan Q W 2006 Opt. Commun. 265 411

    [8]

    Wang H F, Shi L P, Luk'yanchuk B, Sheppard C, Chong C T 2008 Nat. Photon. 2 501

    [9]

    Wang J M, Chen W B, Zhan Q W 2010 Opt. Express 18 21965

    [10]

    Du F R, Zhou Z H, Tan Q F, Yang C X, Zhang X Q, Zhu L Q 2013 Chin. Phys. B 22 064202

    [11]

    Zhou Z H, Zhu L Q 2015 Chin. Phys. B 24 028704

    [12]

    Liu J L, Chen Z Y, Zhang L, Pu J X 2015 Acta Phys. Sin. 64 064201 (in Chinese) [刘绩林, 陈子阳, 张磊, 蒲继雄 2015 物理学报 64 064201]

    [13]

    Chang Q, Yang Y F, He Y, Liu H G, Liu J 2013 Acta Phys. Sin. 62 104202 (in Chinese) [常强, 杨艳芳, 何英, 刘海港, 刘键 2013 物理学报 62 104202]

    [14]

    Han W, Yang Y F, Cheng W, Zhan Q W 2013 Opt. Express 21 20692

    [15]

    Yun M J, Liu L R, Sun J F, Liu D A 2005 J. Opt. Soc. Am. A 22 272

    [16]

    Wang J M, Liu L R, Yun M J, Liu D A, Liu X M 2005 J. Opt. A 7 748

    [17]

    Yun M J, Wan Y, Kong W J, Wang M, Liu J H, Liang W 2008 Acta Phys. Sin. 57 194 (in Chinese) [云茂金, 万勇, 孔伟金, 王美, 刘均海, 梁伟 2008 物理学报 57 194]

    [18]

    Kyoko K, Kyosuke S, Susumu N 2010 Opt. Express 18 4518

    [19]

    Jabbour T, Kuebler S 2006 Opt. Express 14 1033

    [20]

    Wang J M, Liu Q L, Liu Y W, Chen W B, Zhan Q W 2011 Proc. SPIE 8097 809722

    [21]

    Sheppard C J R, Mehta S 2012 Opt. Express 20 27212

    [22]

    Chen L L, Wang J M, He C J, Liu Y W, Yun M J, Kong W J 2013 J. Mod. Opt. 60 391

    [23]

    Guo H M, Weng X Y, Jiang M, Zhao Y H, Sui G R, Hu Q, Wang Y, Zhuang S L 2013 Opt. Express 21 5363

    [24]

    Lin J, Chen R, Yu H C 2014 J. Opt. Soc. Am. A 31 1395

    [25]

    Wang J M, Chen W B, Zhan Q W 2011 Opt. Commun. 284 2668

    [26]

    Huang K, Shi P, Kang X L, Zhang X, Li Y P 2010 Opt. Lett. 35 965

    [27]

    Weng X Y, Guo H M, Sui G R, Hu Q, Zheng J H, Wang Y, Zhuang S L 2013 Opt. Commun. 311 117

    [28]

    Nie Z G, Shi G, Zhang X R, Wang Y X, Song Y L 2014 Opt. Commun. 331 87

    [29]

    Liu T, Tan J B, Liu J, Wang H G 2013 Opt. Lett. 38 2742

  • [1] 徐菁焓, 吴国俊, 董晶, 于洋, 封斐, 刘博. 基于Stokes矢量差分法的背景光偏振特性研究. 物理学报, 2023, 72(24): 244201. doi: 10.7498/aps.72.20230639
    [2] 王富杰, 曹晓昱, 高超, 文雪可, 雷兵. 基于矢量光场空间调制的光波偏振方向解算方法研究. 物理学报, 2023, 72(1): 010201. doi: 10.7498/aps.72.20221745
    [3] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [4] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏. 基于散斑光场偏振共模抑制性的宽谱散射成像技术. 物理学报, 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [5] 刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏. 基于稀疏低秩特性的水下非均匀光场偏振成像技术研究. 物理学报, 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [6] 魏钟鸣, 夏建白. 低维半导体偏振光探测器研究进展. 物理学报, 2019, 68(16): 163201. doi: 10.7498/aps.68.20191002
    [7] 齐淑霞, 刘圣, 李鹏, 韩磊, 程华超, 吴东京, 赵建林. 高效产生任意矢量光场的一种方法. 物理学报, 2019, 68(2): 024201. doi: 10.7498/aps.68.20181816
    [8] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [9] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [10] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [11] 陈直, 许良, 陈荣昌, 杜国浩, 邓彪, 谢红兰, 肖体乔. Kinoform单透镜的硬X射线聚焦性能. 物理学报, 2015, 64(16): 164104. doi: 10.7498/aps.64.164104
    [12] 席思星, 王晓雷, 黄帅, 常胜江, 林列. 基于扭曲向列液晶空间光调制器的矢量光生成. 物理学报, 2015, 64(11): 114204. doi: 10.7498/aps.64.114204
    [13] 管今哥, 朱京平, 田恒, 侯洵. 基于Stokes矢量的实时偏振差分水下成像研究. 物理学报, 2015, 64(22): 224203. doi: 10.7498/aps.64.224203
    [14] 常强, 杨艳芳, 何英, 刘海港, 刘键. 4pi聚焦系统中振幅和相位调制的径向偏振涡旋光束聚焦特性的研究. 物理学报, 2013, 62(10): 104202. doi: 10.7498/aps.62.104202
    [15] 赵维谦, 唐芳, 邱丽荣, 刘大礼. 轴对称矢量光束聚焦特性研究现状及其应用. 物理学报, 2013, 62(5): 054201. doi: 10.7498/aps.62.054201
    [16] 王铮, 高春清, 辛璟焘. 高阶矢量光束高数值孔径聚焦特性的研究. 物理学报, 2012, 61(12): 124209. doi: 10.7498/aps.61.124209
    [17] 于永江, 陈建农, 闫金良, 王菲菲. 聚焦径向调制Bessel-Gaussian光束实现亚波长尺寸纵向偏振光束. 物理学报, 2011, 60(4): 044205. doi: 10.7498/aps.60.044205
    [18] 张二峰, 戴宏毅. 光的偏振对热光关联成像的影响. 物理学报, 2011, 60(6): 064209. doi: 10.7498/aps.60.064209
    [19] 徐凯, 杨艳芳, 何英, 韩小红, 李春芳. 局域椭圆偏振光束强聚焦性质的研究. 物理学报, 2010, 59(9): 6125-6130. doi: 10.7498/aps.59.6125
    [20] 赵建领, 吴令安. 基于偏振叠加和干涉两种方法的可控光脉冲延时器. 物理学报, 2010, 59(5): 3260-3263. doi: 10.7498/aps.59.3260
计量
  • 文章访问数:  4707
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-06
  • 修回日期:  2015-11-05
  • 刊出日期:  2016-02-05

/

返回文章
返回