搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯涂覆空心光纤电光调制特性的研究

毕卫红 王圆圆 付广伟 王晓愚 李彩丽

引用本文:
Citation:

基于石墨烯涂覆空心光纤电光调制特性的研究

毕卫红, 王圆圆, 付广伟, 王晓愚, 李彩丽

Study on the electro-optic modulation properties of graphene-coated hollow optical fiber

Bi Wei-Hong, Wang Yuan-Yuan, Fu Guang-Wei, Wang Xiao-Yu, Li Cai-Li
PDF
导出引用
  • 设计了一种新型的石墨烯-空心光纤可调谐结构, 将石墨烯涂覆在空心光纤的空气孔内表面上, 利用有限元法研究了该结构的电光调制特性. 通过改变石墨烯的化学势可以调控光纤的相位和开关特性, 还可以调谐光纤损耗峰与次峰的位置、强度和宽度. 然而, 空气孔半径和石墨烯层数不会改变开关点和损耗峰与次峰的位置, 只会改变损耗差和损耗峰的强度和宽度, 而且由N 层石墨烯引起的损耗差是单层的N倍. 这是因为石墨烯的介电常数决定了光纤的有效折射率和损耗, 通过改变石墨烯的化学势可以改变石墨烯的介电常数, 而石墨烯的层数和空气孔半径却不会改变石墨烯的介电常数, 但是改变了石墨烯和光的作用强度. 经过参数优化之后, 我们提出一种基于五层石墨烯涂覆空心光纤的电吸收型调制器, 工作在11801760 nm波段, 具有小尺寸(5 mm125 m)、宽光带宽(580 nm)、高消光比(16 dB)、高调制带宽(64 MHz) 和低插入损耗(1.23 dB) 特性. 研究结果对基于石墨烯的可调谐光纤光子器件的设计和应用提供了理论参考.
    Active manipulation of light in optical fibers has been extensively studied with great interest because of the structure simplicity, small footprint, low insertion loss and the compatibility with diverse fiber-optic systems. While graphene can be seen to exhibit a strong electro-optic effect originating from its gapless Dirac-fermionic band structure, there is no report on the electro-absorption properties of all-fiber graphene devices. Here a novel tunable graphene-based hollow optical fiber structure is designed with graphene coated on the inner wall of the fiber central core. Evanescent field of the guided mode propagating in the hollow optical fiber interacts with a monolayer or stacked multilayer graphene, which could modulate the intensity of the propagating mode via altering the chemical potential of the graphene by an external electric field. A full vector finite element method is adopted to analyse the influences of the chemical potential, the air-hole's radius and layers of graphene on the electro-optic modulation properties of the structure. Numerical simulation results show that by adjusting the chemical potential of graphene, the phase and on-off features of the fiber can be tuned correspondingly, as well as the position, magnitude and width of the loss peak and the sub-peak. However, the air-hole's radius and layers of graphene will only affect the loss variation, the magnitude and width of the loss peak and the sub-peak, but have no influence on the on-off point and the position of the loss peak and the sub-peak. In addition, the loss variation caused by N-layer graphene is N times that of the monolayer graphene. Since it is the dielectric constant of graphene that determines the effective refractive index and the loss of the fiber, the dielectric constant is only related to its chemical potential while independent of the air-hole's radius and the layers of graphene. Finally, an optimal electro-absorptive modulator based on the penta-layer graphene-coated hollow optical fiber is proposed for its advantage of ultra-compact footprint (5 mm 125 m), ultrawide optical bandwidth (580 nm), high extinction ratio (16 dB), high modulation bandwidth (64 MHz) and low insertion loss (1.23 dB), as well as a broad operational spectrum that ranges from 1180 to 1760 nm. Our results can provide theoretical references for the design and application of graphene-based tunable photonic fiber devices.
      通信作者: 毕卫红, whbi@ysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61575170, 61475133)资助的课题.
      Corresponding author: Bi Wei-Hong, whbi@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575170, 61475133).
    [1]

    Malmstrm M, Margulis W, Tarasenko O, Pasiskevicius V, Laurell F 2012 Opt. Express 20 2905

    [2]

    Wang J L, Du M Q, Zhang L L, Liu Y J, Sun W M 2015 Acta Phys. Sin. 64 120702 (in Chinese) [王家璐, 杜木清, 张伶俐, 刘永军, 孙伟民 2015 物理学报 64 120702]

    [3]

    Wang L M, Monte T D 2008 Opt. Lett. 33 1078

    [4]

    Yang X H, Liu Y X, Tian F J, Yuan L B, Liu Z H, Luo S Z, Zhao E M 2012 Opt. Lett. 37 2115

    [5]

    Chen Y F, Han Q, Liu T G 2015 Chin. Phys. B 24 014214

    [6]

    Liu C, Pei L, Wu L Y, Wang Y Q, Weng S J, Yu S W 2015 Acta Phys. Sin. 64 174207 (in Chinese) [刘超, 裴丽, 吴良英, 王一群, 翁思俊, 余少伟 2015 物理学报 64 174207]

    [7]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [9]

    Vakil A, Engheta N 2011 Science 332 1291

    [10]

    Obraztsov P A, Rybin M G, Tyurnina A V, Garnov S V, Obraztsova E D, Obraztsov A N, Svirko Y P 2011 Nano Lett. 11 1540

    [11]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435

    [12]

    Lu Z L, Zhao W S 2012 J. Opt. Soc. Am. B 29 1490

    [13]

    Zhou F, Hao R, Jin X F, Zhang X M, Li E P 2014 IEEE Photon. Technol. Lett. 26 1867

    [14]

    Hao R, Du W, Chen H S, Jin X F, Yang L Z, Li E P 2013 Appl. Phys. Lett. 103 061116

    [15]

    Sorianello V, Midrio M, Romagnoli M 2015 Opt. Express 23 6478

    [16]

    Bao Q L, Loh K P 2012 ACS Nano 6 3677

    [17]

    Bao Q L, Zhang H, Wang B, Ni Z H, Lim C H Y X, Wang Y, Tang D Y, Loh K P 2011 Nat. Photon. 5 411

    [18]

    Feng D J, Huang W Y, Jiang S Z, Ji W, Jia D F 2013 Acta Phys. Sin. 62 054202 (in Chinese) [冯德军, 黄文育, 姜守振, 季伟, 贾东方 2013 物理学报 62 054202]

    [19]

    Lee E J, Choi S Y, Jeong H, Park N H, Yim W, Kim M H, Park J K, Son S, Bae S, Kim S J, Lee K, Ahn Y H, Ahn K J, Hong B H, Park J Y, Rotermund F, Yeom D I 2015 Nat. Commun. 6 6851

    [20]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222

    [21]

    Capmany J, Domenech D, Muoz P 2014 Opt. Express 22 5283

    [22]

    Lee S, Park J, Jeong Y, Jung H, Oh K 2009 J. Lightwave Technol. 27 4919

    [23]

    Reed G T, Mashanovich G, Gardes F Y, Thomson D J 2010 Nat. Photon. 4 518

  • [1]

    Malmstrm M, Margulis W, Tarasenko O, Pasiskevicius V, Laurell F 2012 Opt. Express 20 2905

    [2]

    Wang J L, Du M Q, Zhang L L, Liu Y J, Sun W M 2015 Acta Phys. Sin. 64 120702 (in Chinese) [王家璐, 杜木清, 张伶俐, 刘永军, 孙伟民 2015 物理学报 64 120702]

    [3]

    Wang L M, Monte T D 2008 Opt. Lett. 33 1078

    [4]

    Yang X H, Liu Y X, Tian F J, Yuan L B, Liu Z H, Luo S Z, Zhao E M 2012 Opt. Lett. 37 2115

    [5]

    Chen Y F, Han Q, Liu T G 2015 Chin. Phys. B 24 014214

    [6]

    Liu C, Pei L, Wu L Y, Wang Y Q, Weng S J, Yu S W 2015 Acta Phys. Sin. 64 174207 (in Chinese) [刘超, 裴丽, 吴良英, 王一群, 翁思俊, 余少伟 2015 物理学报 64 174207]

    [7]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [9]

    Vakil A, Engheta N 2011 Science 332 1291

    [10]

    Obraztsov P A, Rybin M G, Tyurnina A V, Garnov S V, Obraztsova E D, Obraztsov A N, Svirko Y P 2011 Nano Lett. 11 1540

    [11]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435

    [12]

    Lu Z L, Zhao W S 2012 J. Opt. Soc. Am. B 29 1490

    [13]

    Zhou F, Hao R, Jin X F, Zhang X M, Li E P 2014 IEEE Photon. Technol. Lett. 26 1867

    [14]

    Hao R, Du W, Chen H S, Jin X F, Yang L Z, Li E P 2013 Appl. Phys. Lett. 103 061116

    [15]

    Sorianello V, Midrio M, Romagnoli M 2015 Opt. Express 23 6478

    [16]

    Bao Q L, Loh K P 2012 ACS Nano 6 3677

    [17]

    Bao Q L, Zhang H, Wang B, Ni Z H, Lim C H Y X, Wang Y, Tang D Y, Loh K P 2011 Nat. Photon. 5 411

    [18]

    Feng D J, Huang W Y, Jiang S Z, Ji W, Jia D F 2013 Acta Phys. Sin. 62 054202 (in Chinese) [冯德军, 黄文育, 姜守振, 季伟, 贾东方 2013 物理学报 62 054202]

    [19]

    Lee E J, Choi S Y, Jeong H, Park N H, Yim W, Kim M H, Park J K, Son S, Bae S, Kim S J, Lee K, Ahn Y H, Ahn K J, Hong B H, Park J Y, Rotermund F, Yeom D I 2015 Nat. Commun. 6 6851

    [20]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222

    [21]

    Capmany J, Domenech D, Muoz P 2014 Opt. Express 22 5283

    [22]

    Lee S, Park J, Jeong Y, Jung H, Oh K 2009 J. Lightwave Technol. 27 4919

    [23]

    Reed G T, Mashanovich G, Gardes F Y, Thomson D J 2010 Nat. Photon. 4 518

  • [1] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [3] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [4] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [5] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [6] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [7] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [8] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [9] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [10] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [11] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [12] 周丽, 魏源, 黄志祥, 吴先良. 基于FDFD方法研究含石墨烯薄膜太阳能电池的电磁特性. 物理学报, 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
    [13] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究. 物理学报, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [14] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [15] 陈艳, 周桂耀, 夏长明, 侯峙云, 刘宏展, 王超. 具有双模特性的大模场面积微结构光纤的设计. 物理学报, 2014, 63(1): 014701. doi: 10.7498/aps.63.014701
    [16] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [17] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [18] 齐跃峰, 乔汉平, 毕卫红, 刘燕燕. 热激法光子晶体光纤光栅制备工艺中热传导特性研究. 物理学报, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [19] 韩奇钢, 贾晓鹏, 马红安, 李瑞, 张聪, 李战厂, 田宇. 基于三维有限元法模拟分析六面顶顶锤的热应力. 物理学报, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [20] 曹士英, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 利用空心光纤探测飞秒脉冲在氩气中成丝过程中的光谱演变. 物理学报, 2007, 56(5): 2765-2768. doi: 10.7498/aps.56.2765
计量
  • 文章访问数:  5262
  • PDF下载量:  377
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-13
  • 修回日期:  2015-12-04
  • 刊出日期:  2016-02-05

/

返回文章
返回