搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效频率转换下双波长外腔共振和频技术研究

谭巍 邱晓东 赵刚 侯佳佳 贾梦源 闫晓娟 马维光 张雷 董磊 尹王保 肖连团 贾锁堂

引用本文:
Citation:

高效频率转换下双波长外腔共振和频技术研究

谭巍, 邱晓东, 赵刚, 侯佳佳, 贾梦源, 闫晓娟, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂

Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion

Tan Wei, Qiu Xiao-Dong, Zhao Gang, Hou Jia-Jia, Jia Meng-Yuan, Yan Xiao-Juan, Ma Wei-Guang, Zhang Lei, Dong Lei, Yin Wang-Bao, Xiao Lian-Tuan, Jia Suo-Tang
PDF
导出引用
  • 基于外腔的高效频率转换, 尤其是当系统运行在抽运不消耗近似机理下, 信号光可实现大于90%的转换, 因此无法通过信号光直接获得其到腔模频率锁定的误差信号. 本文通过对信号光调制、和频光解调的方法获得了该误差信号, 实现了双波长激光到外腔腔模的级联锁定. 实验中外部环形腔将1.3 W的1064 nm抽运光放大到约14.3 W. 当1583 nm信号光从10 W变化到50 mW, 其到636 nm和频光的转化效率约为73%; 当从50 mW变化到295 mW时, 转换效率呈线性降低到60%, 最终获得了440 mW的636 nm激光.
    In recent years, more than 90% of the signal laser power can be up-converted based on the high-efficiency double resonant external cavity sum-frequency generation (SFG), especially when the whole system runs under the undepleted pump approximation scheme. Therefore it is difficult to directly achieve an error signal with a high signal-to-noise ratio through the signal laser to lock its frequency to the cavity mode. In this paper a novel method, based on the frequency modulation of signal laser and demodulation of the SFG laser, is used to obtain the error signal to realize the cascade frequency locking between the two fundamental lasers and the external cavity. In this experiment, 1064 nm laser is the pump laser and 1583 nm laser is the signal laser. They are coupled into a ring cavity inside which a 5% MgO-doped PPLN (25 mm1 mm0.5 mm) is used to produce the SFG laser of 636 nm. When the pump laser is resonant with the external cavity, a circulating power of 14.3 W is obtained with its input power of 1.3 W. The reflectivity of the input coupling mirror of signal laser is 10% to restrain the impendence mismatch. The temperature of PPLN is set at 68.5 ℃ to reach the optimum SFG temperature. In order to keep the signal laser resonance inside the external cavity, one needs to lock its frequency to the cavity mode. A 28.5 kHz sinusoidal voltage is used to modulate the frequency of the signal laser so that the frequency of 636 nm laser is modulated simultaneously. Then 5% of the output 636 nm laser power is sent into a Si photodiode detector the signal of which is demodulated at the modulation frequency by a lock-in amplifier. Finally the demodulated signal is feedback to the frequency control port of signal laser. Under these conditions, 73% of 1583 nm signal laser power can be converted into 636 nm laser power when the incident power varies from 10 W to demodulation of the transmitted cavity mode of 1583 nm when the incident signal laser power is below 12 mW. When the signal laser power increases from 50 mW to 295 mW, the conversion efficiency linearly drops to 60%, which is mainly caused by depleting the 1064 nm pump laser power. Finally a 440 mW of 636 nm laser is generated with an incident signal laser power of 295 mW. This scheme can realize a high-efficiency SFG with a low input signal laser power or poor single-pass SFG efficiency.
      通信作者: 马维光, mwg@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB921603)、 国家自然科学基金(批准号: 61127017, 61178009, 61108030, 60908019, 61275213, 61205216)和山西省青年科学基金(批准号: 2010021003-3, 2012021022-1, 2015021105)资助的课题.
      Corresponding author: Ma Wei-Guang, mwg@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 61127017, 61178009, 61108030, 60908019, 61275213, 61205216), and the Shanxi Natural Science Foundation, China (Grant Nos. 2010021003-3, 2012021022-1, 2015021105).
    [1]

    Hadazibabic Z, Gupta S, Stan C, Schunck C, Zwierlein M, Dieckmann K, Ketterle W 2003 Phys. Rev. Lett. 91 160401

    [2]

    Feng Y, Taylor L R, Calia D B 2009 Opt. Express 17 19021

    [3]

    Richter D, Fried A, Wert B P, Walega J G, Tittel F K 2002 Appl. Phys. B 75 281

    [4]

    Janousek J, Johansson S, Tidemand-Lichtenberg P, Wang S, Mortense J L, Buchhave P, Laurell F 2005 Opt. Express 13 1188

    [5]

    Liu Q, Yan X P, Chen H L, Huang L, Gong M L 2010 Chin. J. Lasers 37 2289 (in Chinese) [柳强, 闫兴鹏, 陈海龙, 黄磊, 巩马理 2010 中国激光 37 2289]

    [6]

    Wigley P G, Zhang Q, Miesak E, Dixon G J 1995 Opt. Lett. 20 2496

    [7]

    Jensen O B, Petersen P M 2013 Appl. Phys. Lett. 103 141107

    [8]

    Meyer T R, Roy S 2005 Opt. Lett. 30 3087

    [9]

    Kumar P 1990 Opt. Lett. 15 1476

    [10]

    Albota M A, Wong F N C, Shapiro J H 2006 J. Opt. Soc. Am. B 23 918

    [11]

    Guerreiro T, Martin A, Sanguinetti B, Pelc J S, Langrock C, Fejer M M, Gisin N, Zbinden H, Sangouard N, Thew R T 2014 Phys. Rev. Lett. 113 173601

    [12]

    Roussev R V, Langrock C, Kurz J R, Fejer M M 2004 Opt. Lett. 29 1518

    [13]

    Albota M A, Wong N C 2004 Opt. Lett. 29 1449

    [14]

    Pan H F, Dong H F, Zeng H P 2006 Appl. Phys. Lett. 89 191108

    [15]

    Samblowski A, Vollmer C E, Baune C, Fiurasek J, Schnabel R 2014 Opt. Lett. 39 2979

    [16]

    Tan W, Fu X F, Li Z X, Zhao G, Yan X J, Ma W G, Dong L, Zhang L, Yin W B, Jia S T 2013 Acta Phys. Sin. 62 094211 (in Chinese) [谭巍, 付小芳, 李志新, 赵刚, 闫晓娟, 马维光, 董磊, 张雷, 尹王保, 贾锁堂 2013 物理学报 62 094211]

    [17]

    Kaneda Y, Kubota S 1997 Appl. Opt. 36 7766

    [18]

    Bienfang J C, Denman C A, Grime B W, Hillman P D, Moore G T, Telle J M 2003 Opt. Lett. 28 2219

    [19]

    Fugate R Q, Denman C A, Hillman P D, Moore G T, Telle J M, LaRue I A D, Drummond J D, Spinhirne J M 2004 Proc. SPIE 5490 1010

    [20]

    Mimoun E, Sarlo L D, Zondy J J, Dalibard J, Gerbier F 2008 Opt. Express 16 18684

    [21]

    Cankaya H, Calendron A L, Suchowski H, Kartner F X 2014 Opt. Lett. 39 2912

    [22]

    Tawfieq M, Jensen O B, Hansen A K, Sumpf B, Paschke K, Andersen P E 2015 Opt. Commun. 339 137

    [23]

    Ye J 1997 Ph. D. Dissertation (Colorado: University of Colorado)

    [24]

    Gayer O, Sacks Z, Galun E, Arie A 2008 Appl. Phys. B 91 343

    [25]

    Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597

    [26]

    Yan X J 2012 Ph. D. Dissertation (Taiyuan: Shanxi university) (in Chinese) [闫晓娟 2012 博士学位论文 (太原: 山西大学)]

    [27]

    Boyd R 2008 Nonlinear Optics (3rd Ed.) (New York: Elsevier) pp91-93

    [28]

    Ma L J, Slattery O, Tang X 2012 Phys. Rep. 521 69

  • [1]

    Hadazibabic Z, Gupta S, Stan C, Schunck C, Zwierlein M, Dieckmann K, Ketterle W 2003 Phys. Rev. Lett. 91 160401

    [2]

    Feng Y, Taylor L R, Calia D B 2009 Opt. Express 17 19021

    [3]

    Richter D, Fried A, Wert B P, Walega J G, Tittel F K 2002 Appl. Phys. B 75 281

    [4]

    Janousek J, Johansson S, Tidemand-Lichtenberg P, Wang S, Mortense J L, Buchhave P, Laurell F 2005 Opt. Express 13 1188

    [5]

    Liu Q, Yan X P, Chen H L, Huang L, Gong M L 2010 Chin. J. Lasers 37 2289 (in Chinese) [柳强, 闫兴鹏, 陈海龙, 黄磊, 巩马理 2010 中国激光 37 2289]

    [6]

    Wigley P G, Zhang Q, Miesak E, Dixon G J 1995 Opt. Lett. 20 2496

    [7]

    Jensen O B, Petersen P M 2013 Appl. Phys. Lett. 103 141107

    [8]

    Meyer T R, Roy S 2005 Opt. Lett. 30 3087

    [9]

    Kumar P 1990 Opt. Lett. 15 1476

    [10]

    Albota M A, Wong F N C, Shapiro J H 2006 J. Opt. Soc. Am. B 23 918

    [11]

    Guerreiro T, Martin A, Sanguinetti B, Pelc J S, Langrock C, Fejer M M, Gisin N, Zbinden H, Sangouard N, Thew R T 2014 Phys. Rev. Lett. 113 173601

    [12]

    Roussev R V, Langrock C, Kurz J R, Fejer M M 2004 Opt. Lett. 29 1518

    [13]

    Albota M A, Wong N C 2004 Opt. Lett. 29 1449

    [14]

    Pan H F, Dong H F, Zeng H P 2006 Appl. Phys. Lett. 89 191108

    [15]

    Samblowski A, Vollmer C E, Baune C, Fiurasek J, Schnabel R 2014 Opt. Lett. 39 2979

    [16]

    Tan W, Fu X F, Li Z X, Zhao G, Yan X J, Ma W G, Dong L, Zhang L, Yin W B, Jia S T 2013 Acta Phys. Sin. 62 094211 (in Chinese) [谭巍, 付小芳, 李志新, 赵刚, 闫晓娟, 马维光, 董磊, 张雷, 尹王保, 贾锁堂 2013 物理学报 62 094211]

    [17]

    Kaneda Y, Kubota S 1997 Appl. Opt. 36 7766

    [18]

    Bienfang J C, Denman C A, Grime B W, Hillman P D, Moore G T, Telle J M 2003 Opt. Lett. 28 2219

    [19]

    Fugate R Q, Denman C A, Hillman P D, Moore G T, Telle J M, LaRue I A D, Drummond J D, Spinhirne J M 2004 Proc. SPIE 5490 1010

    [20]

    Mimoun E, Sarlo L D, Zondy J J, Dalibard J, Gerbier F 2008 Opt. Express 16 18684

    [21]

    Cankaya H, Calendron A L, Suchowski H, Kartner F X 2014 Opt. Lett. 39 2912

    [22]

    Tawfieq M, Jensen O B, Hansen A K, Sumpf B, Paschke K, Andersen P E 2015 Opt. Commun. 339 137

    [23]

    Ye J 1997 Ph. D. Dissertation (Colorado: University of Colorado)

    [24]

    Gayer O, Sacks Z, Galun E, Arie A 2008 Appl. Phys. B 91 343

    [25]

    Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597

    [26]

    Yan X J 2012 Ph. D. Dissertation (Taiyuan: Shanxi university) (in Chinese) [闫晓娟 2012 博士学位论文 (太原: 山西大学)]

    [27]

    Boyd R 2008 Nonlinear Optics (3rd Ed.) (New York: Elsevier) pp91-93

    [28]

    Ma L J, Slattery O, Tang X 2012 Phys. Rep. 521 69

  • [1] 贺海, 杨鹏飞, 张鹏飞, 李刚, 张天才. 基于1/4波片的腔增强自发参量下转换过程中双折射效应的补偿. 物理学报, 2023, 72(12): 124203. doi: 10.7498/aps.72.20230422
    [2] 赵岩, 李娜, 党思远, 杨国全, 李昌勇. 对氯苯腈的双色共振双光子电离和质量分辨阈值电离光谱. 物理学报, 2022, 71(10): 103301. doi: 10.7498/aps.71.20220089
    [3] 曲良辉, 都琳, 曹子露, 胡海威, 邓子辰. 化学自突触的电导扰动诱导相干或随机双共振现象. 物理学报, 2020, 69(23): 230501. doi: 10.7498/aps.69.20200856
    [4] 张旭东, 储玉喜, 贾威, 胡明列. 基于基频放大的紫外皮秒355 nm输出效率提升系统. 物理学报, 2019, 68(20): 200601. doi: 10.7498/aps.68.20190876
    [5] 谢仕永, 张小富, 杨程亮, 乐小云, 薄勇, 崔大复, 许祖彦. 周期极化KTiOPO4晶体和频单块非平面环形腔激光产生连续单频589nm黄光. 物理学报, 2016, 65(9): 094203. doi: 10.7498/aps.65.094203
    [6] 闫晓娟, 马维光, 谭巍. 外腔共振和频系统中阻抗匹配的理论研究. 物理学报, 2016, 65(4): 044207. doi: 10.7498/aps.65.044207
    [7] 厉巧巧, 张昕, 吴江滨, 鲁妍, 谭平恒, 冯志红, 李佳, 蔚翠, 刘庆斌. 双层石墨烯位于18002150 cm-1频率范围内的和频拉曼模. 物理学报, 2014, 63(14): 147802. doi: 10.7498/aps.63.147802
    [8] 谭巍, 付小芳, 李志新, 赵刚, 闫晓娟, 马维光, 董磊, 张雷, 尹王保, 贾锁堂. 基于单波长外腔共振和频技术产生波长可调谐589 nm激光及钠原子饱和荧光谱的测量. 物理学报, 2013, 62(9): 094211. doi: 10.7498/aps.62.094211
    [9] 孙江, 孙娟, 王颖, 苏红新. 双光子共振非简并四波混频测量Ba原子里德伯态的碰撞展宽和频移. 物理学报, 2012, 61(11): 114214. doi: 10.7498/aps.61.114214
    [10] 李斌, 姚建铨, 丁欣, 王鹏, 张帆. 激光二极管抽运共轴双晶体黄光激光器. 物理学报, 2011, 60(2): 024208. doi: 10.7498/aps.60.024208
    [11] 崔前进, 徐一汀, 宗楠, 鲁远甫, 程贤坤, 彭钦军, 薄勇, 崔大复, 许祖彦. 高功率腔内双共振2μm光参量振荡器特性研究. 物理学报, 2009, 58(3): 1715-1718. doi: 10.7498/aps.58.1715
    [12] 喻 松, 张 华, 申 静, 张永军, 顾畹仪. 基于双通构型的和频、差频可变波长路由方案及其应用. 物理学报, 2008, 57(2): 909-916. doi: 10.7498/aps.57.909
    [13] 林 敏, 方利民, 朱若谷. 双频信号作用下耦合双稳系统的双共振特性. 物理学报, 2008, 57(5): 2638-2642. doi: 10.7498/aps.57.2638
    [14] 周丙常, 徐 伟. 周期混合信号和噪声联合激励下的非对称双稳系统的随机共振. 物理学报, 2007, 56(10): 5623-5628. doi: 10.7498/aps.56.5623
    [15] 王 鹏, 赵 环, 王兆华, 李德华, 魏志义. 飞秒与皮秒激光脉冲的主动同步及和频产生宽带超短激光的研究. 物理学报, 2006, 55(8): 4161-4165. doi: 10.7498/aps.55.4161
    [16] 甘琛利, 张彦鹏, 冯 宇, 余孝军, 汪 杰, 李创社, 宋建平, 卢克清, 侯 洵. 阿秒极化拍的V型三能级对称二阶相干理论. 物理学报, 2005, 54(2): 726-735. doi: 10.7498/aps.54.726
    [17] 李瑞宁, 来引娟, 马小涛. 激光二极管抽运Nd∶YVO4和KTP倍频产生单频绿光激发器. 物理学报, 2002, 51(8): 1736-1738. doi: 10.7498/aps.51.1736
    [18] 郑仰东, 李俊庆, 李淳飞. 耦合双振子模型手性分子的微观参量对和频过程的影响. 物理学报, 2002, 51(6): 1279-1285. doi: 10.7498/aps.51.1279
    [19] 王鹏谦, 田测产, 孙(马匋)亨. 在Ne的第一共振态以下通过四波和频产生可调谐VUV相干辐射. 物理学报, 1997, 46(2): 300-305. doi: 10.7498/aps.46.300
    [20] 黄显玲, 夏宗炬, 邹英华. Hg蒸汽中通过双光子共振四波差频产生调谐真空紫外辐射. 物理学报, 1990, 39(9): 1385-1392. doi: 10.7498/aps.39.1385
计量
  • 文章访问数:  5189
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-16
  • 修回日期:  2015-12-18
  • 刊出日期:  2016-04-05

/

返回文章
返回