搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁光阱中超冷钠-铯原子碰撞的实验研究

徐润东 刘文良 武寄洲 马杰 肖连团 贾锁堂

引用本文:
Citation:

磁光阱中超冷钠-铯原子碰撞的实验研究

徐润东, 刘文良, 武寄洲, 马杰, 肖连团, 贾锁堂

Ultracold collisions in a dual species 23Na-133Cs magneto-optical trap

Xu Run-Dong, Liu Wen-Liang, Wu Ji-Zhou, Ma Jie, Xiao Lian-Tuan, Jia Suo-Tang
PDF
导出引用
  • 研究了磁光阱中异核超冷钠铯原子的碰撞机理, 测量了超冷钠原子的碰撞损失率, 得到了钠-铯原子的碰撞损失系数Na-Cs与钠原子俘获光强度之间的关系. 利用多普勒模型计算了不同俘获光强度下的钠原子磁光阱的阱深, 得到了临界光强的理论值, 与实验结果符合得较好.
    The production and research of ultracold heteronuclear molecules have aroused the great interest recently. On the one hand, these molecules are extremely popular in experiments for exploring the collision dynamic behaviors in threshold, photoassociative spectrum and strong dipole-dipole interactions. On the other hand, ultracold polar molecules populated at deeply bound levels in the singlet ground state are the right candidates to investigate quantum memories for quantum simulation, and to study strongly interacting quantum degenerate gases. The precise knowledge of cold collision processes between two different types of alkali atoms is necessary for understanding and utilizing ultracold heteronuclear molecules, sympathetic cooling, and thus formation of two species BEC. The goal of the present investigation is to study the collisions between ultracold sodium atoms and cesium atoms. We systematically demonstrate simultaneously trapping ultracold sodium and cesium atoms in a dual-species magneto-optical trap (MOT). The sodium atom trap loss rate coefficient Na-Cs is measured as a function of Na trapping laser intensity. At low intensities, the trap loss is dominated by ground-state hyperfine-changing collisions, while at high intensities, collisions involving excited atoms are more important. A strong interspecies collision-induced loss for Na atoms in the MOT is observed. In order to obtain the trap loss coefficient Na-Cs, we proceed in two steps. First, the Cs repumping laser is blocked to avoid the formation of ultraold Cs atoms. The loading process of Na atoms is recorded when the Cs trapping laser is on. Second, the loading curves of the Na atoms are obtained as Cs atoms are present with the repumping laser beams. The total losses PNa and PNa' are acquired by fitting the two loading curves of trapped Na atoms. Thus, the trap loss coefficient Na-Cs can be derived from the difference between total losses PNa and PNa' divided by the density of the Cs atoms. The coefficient Na-Cs decreases in a range of 5-10mW/cm2, which originates from the hyperfine-state changing (HFC) collision. A Doppler model is used to calculate the Na atom trap depth, in that the atom trap depth and exoergic energy determine the behavior of the collisional trap loss rate coefficient. The three corresponding calculated critical intensities of Na trapping laser are 7.98, 14.82, 16.2 mW/cm2 respectively in the Na-Cs HFC collision process. The first calculated critical intensity value agrees well with the experimental result. Our work provides a valuable insight into HFC collision between Na and Cs atoms and also paves the way for the production of ultracold NaCs molecules using Photoassociation (PA) technology. Furthermore, the experimental results lay a great basis for the obtainments of high sensitive heteronuclear NaCs molecular PA spectrum and the creation of deeply bound ground state molecules.
      通信作者: 马杰, mj@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB921603)、长江学者和创新团队发展计划(批准号: IRT13076)、基金委重大研究计划培育项目(批准号: 91436108)、国家自然科学基金(批准号: 61378014, 61308023, 61378015, 11434007)、教育部新教师基金(批准号: 20131401120012)、国家自然科学基金国家基础科学人才培养基金(批准号: J1103210)、山西省优秀青年学术带头人和山西省青年科技研究基金(批准号: 2013021005-1)资助的课题.
      Corresponding author: Ma Jie, mj@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91436108), the National Natural Science Foundation of China (Grant Nos. 61378014, 61308023, 61378015, 11434007), the New Teacher Fund of the Ministry of Education of China (Grant No. 20131401120012), the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J1103210), and the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2013021005-1).
    [1]

    Raab E L, Prentiss M, Cable A, Chu S, Pritchard D E 1987 Phys. Rev. Lett. 59 2631

    [2]

    Wang J Y, Liu B, Diao W T, Jin G, He J, Wang J M 2014 Acta Phys. Sin. 63 053202 (in Chinese) [王杰英, 刘贝, 刁文婷, 靳刚, 何军, 王军民 2014 物理学报 63 053202]

    [3]

    Dutta S, Altaf A, Lorenz J, Elliott D S, Chen Y P 2014 J. Phys. B: At. Mol. Opt. Phys. 47 105301

    [4]

    Chen P, Li Y Q, Zhang Y C, Wu J Z, Ma J, Xiao L T, Jia S T 2013 Chin. Phys. B 22 093301

    [5]

    Santos M S, Nussenzveig P, Antunes A, Cardona P S P, Bagnato V S 1999 Phys. Rev. A 60 3892

    [6]

    Young Y E, Ejnisman R, Shaffer J P, Bigelow N P 2000 Phys. Rev. A 62 055403

    [7]

    Zhang J C, Liu Y F, Sun J F 2011 Chin. Phys. B 20 023401

    [8]

    Anderlini M, Courtade E, Cristiani M, Cossart D, Ciampini D, Sias C, Morsch O, Arimondo E 2005 Phys. Rev. A 71 061401

    [9]

    DeMile D 2002 Phys. Rev. Lett. 88 067901

    [10]

    Yang Y, Ji Z H, Yuan J P, Wang L R, Zhao Y T, Ma J, Xiao L T, Jia S T 2012 Acta Phys. Sin. 61 213301 (in Chinese) [杨艳, 姬中华, 元晋鹏, 汪丽蓉, 赵延霆, 马杰, 肖连团, 贾锁堂 2012 物理学报 61 213301]

    [11]

    Huang L H, Wang P J, Fu Z K, Zhang J 2014 Chin. Phys. B 23 013402

    [12]

    Santos L, Shlyapnikov G V, Zoller P, Lewenstein M 2000 Phys. Rev. Lett. 85 1791

    [13]

    Mancini M W, Caires A R L, Telles G D, Bagnato V S, Marcassa L G 2004 Eur. Phys. J. D 30 105

    [14]

    Marinescu M, Sadeghpour H R 1999 Phys. Rev. A 59 390

    [15]

    Gallagher A, Pritchard D 1989 Phys. Rev. Lett. 63 957

    [16]

    Ji Z H, Wu J Z, Zhang H S, Meng T F, Ma J, Wang L R, Zhao Y T, Xiao L T, Jia S T 2011 J. Phys. B: At. Mol. Opt. Phys. 44 025202

    [17]

    Chang X F, Ji Z H, Yuan J P, Zhao Y T, Yang Y G, Xiao L T, Jia S T 2013 Chin. Phys. B 22 093701

    [18]

    Shaffer J P, Chalupczak W, Bigelow N P 1999 Phys. Rev. A 60 R3365

    [19]

    Gensemer S D, Villicana V S, Tan K Y N, Grove T T, Gould P L 1997 Phys. Rev. A 56 4055

    [20]

    Han Y X, Wang B, Ma J, Xiao J T, Wang H 2007 Acta Sin. Quantum Opt. 13 30 (in Chinese) [韩燕旭, 王波, 马杰, 校金涛, 王海 2007 量子光学学报 13 30]

    [21]

    Walker T, Sesko D, Wieman C E 1990 Phys. Rev. Lett. 64 408

    [22]

    Tiwari V B, Singh S, Rawat H S, Mehendale S C 2008 Phys. Rev. A 78 063421

    [23]

    Aubck G, Binder C, Holler L, Wippel V, Rumpf K, Szczepkowski J, Ernst W E, Windholz L 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S871

    [24]

    Wallace C D, Dinneen T P, Tan K N, Grove T T, Gould P L 1992 Phys. Rev. Lett. 69 897

  • [1]

    Raab E L, Prentiss M, Cable A, Chu S, Pritchard D E 1987 Phys. Rev. Lett. 59 2631

    [2]

    Wang J Y, Liu B, Diao W T, Jin G, He J, Wang J M 2014 Acta Phys. Sin. 63 053202 (in Chinese) [王杰英, 刘贝, 刁文婷, 靳刚, 何军, 王军民 2014 物理学报 63 053202]

    [3]

    Dutta S, Altaf A, Lorenz J, Elliott D S, Chen Y P 2014 J. Phys. B: At. Mol. Opt. Phys. 47 105301

    [4]

    Chen P, Li Y Q, Zhang Y C, Wu J Z, Ma J, Xiao L T, Jia S T 2013 Chin. Phys. B 22 093301

    [5]

    Santos M S, Nussenzveig P, Antunes A, Cardona P S P, Bagnato V S 1999 Phys. Rev. A 60 3892

    [6]

    Young Y E, Ejnisman R, Shaffer J P, Bigelow N P 2000 Phys. Rev. A 62 055403

    [7]

    Zhang J C, Liu Y F, Sun J F 2011 Chin. Phys. B 20 023401

    [8]

    Anderlini M, Courtade E, Cristiani M, Cossart D, Ciampini D, Sias C, Morsch O, Arimondo E 2005 Phys. Rev. A 71 061401

    [9]

    DeMile D 2002 Phys. Rev. Lett. 88 067901

    [10]

    Yang Y, Ji Z H, Yuan J P, Wang L R, Zhao Y T, Ma J, Xiao L T, Jia S T 2012 Acta Phys. Sin. 61 213301 (in Chinese) [杨艳, 姬中华, 元晋鹏, 汪丽蓉, 赵延霆, 马杰, 肖连团, 贾锁堂 2012 物理学报 61 213301]

    [11]

    Huang L H, Wang P J, Fu Z K, Zhang J 2014 Chin. Phys. B 23 013402

    [12]

    Santos L, Shlyapnikov G V, Zoller P, Lewenstein M 2000 Phys. Rev. Lett. 85 1791

    [13]

    Mancini M W, Caires A R L, Telles G D, Bagnato V S, Marcassa L G 2004 Eur. Phys. J. D 30 105

    [14]

    Marinescu M, Sadeghpour H R 1999 Phys. Rev. A 59 390

    [15]

    Gallagher A, Pritchard D 1989 Phys. Rev. Lett. 63 957

    [16]

    Ji Z H, Wu J Z, Zhang H S, Meng T F, Ma J, Wang L R, Zhao Y T, Xiao L T, Jia S T 2011 J. Phys. B: At. Mol. Opt. Phys. 44 025202

    [17]

    Chang X F, Ji Z H, Yuan J P, Zhao Y T, Yang Y G, Xiao L T, Jia S T 2013 Chin. Phys. B 22 093701

    [18]

    Shaffer J P, Chalupczak W, Bigelow N P 1999 Phys. Rev. A 60 R3365

    [19]

    Gensemer S D, Villicana V S, Tan K Y N, Grove T T, Gould P L 1997 Phys. Rev. A 56 4055

    [20]

    Han Y X, Wang B, Ma J, Xiao J T, Wang H 2007 Acta Sin. Quantum Opt. 13 30 (in Chinese) [韩燕旭, 王波, 马杰, 校金涛, 王海 2007 量子光学学报 13 30]

    [21]

    Walker T, Sesko D, Wieman C E 1990 Phys. Rev. Lett. 64 408

    [22]

    Tiwari V B, Singh S, Rawat H S, Mehendale S C 2008 Phys. Rev. A 78 063421

    [23]

    Aubck G, Binder C, Holler L, Wippel V, Rumpf K, Szczepkowski J, Ernst W E, Windholz L 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S871

    [24]

    Wallace C D, Dinneen T P, Tan K N, Grove T T, Gould P L 1992 Phys. Rev. Lett. 69 897

  • [1] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发. 物理学报, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [2] 薛咏梅, 郝丽萍, 焦月春, 韩小萱, 白素英, 赵建明, 贾锁堂. 超冷铯Rydberg原子的Autler-Townes分裂. 物理学报, 2017, 66(21): 213201. doi: 10.7498/aps.66.213201
    [3] 袁园, 芦小刚, 白金海, 李建军, 吴令安, 傅盘铭, 王如泉, 左战春. 多模1064nm光纤激光器实现一维远失谐光晶格. 物理学报, 2016, 65(4): 043701. doi: 10.7498/aps.65.043701
    [4] 苟维, 刘亢亢, 付小虎, 赵儒臣, 孙剑芳, 徐震. 中性汞原子磁光阱装载率的优化. 物理学报, 2016, 65(13): 130201. doi: 10.7498/aps.65.130201
    [5] 赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂. 光缔合制备超冷铯分子的温度测量. 物理学报, 2014, 63(19): 193701. doi: 10.7498/aps.63.193701
    [6] 文瑞娟, 杜金锦, 李文芳, 李刚, 张天才. 内腔多原子直接俘获的强耦合腔量子力学系统的构建. 物理学报, 2014, 63(24): 244203. doi: 10.7498/aps.63.244203
    [7] 杨威, 孙大立, 周林, 王谨, 詹明生. 用于原子干涉仪实验的锂原子的塞曼减速与磁光囚禁. 物理学报, 2014, 63(15): 153701. doi: 10.7498/aps.63.153701
    [8] 王杰英, 刘贝, 刁文婷, 靳刚, 何军, 王军民. 磁光阱中单原子荧光信号的优化及单原子的高效装载. 物理学报, 2014, 63(5): 053202. doi: 10.7498/aps.63.053202
    [9] 王勇, 张好, 陈杰, 王丽梅, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷nS Rydberg原子的态转移. 物理学报, 2013, 62(9): 093201. doi: 10.7498/aps.62.093201
    [10] 元晋鹏, 姬中华, 杨艳, 张洪山, 赵延霆, 马杰, 汪丽蓉, 肖连团, 贾锁堂. 飞行时间质谱探测磁光阱中超冷分子离子的实验研究. 物理学报, 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [11] 徐志君, 刘夏吟. 光晶格中非相干超冷原子的密度关联效应. 物理学报, 2011, 60(12): 120305. doi: 10.7498/aps.60.120305
    [12] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量. 物理学报, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [13] 张一驰, 武寄洲, 马杰, 赵延霆, 汪丽蓉, 肖连团, 贾锁堂. 最优化参数控制提高超冷铯分子振转光谱的信噪比. 物理学报, 2010, 59(8): 5418-5423. doi: 10.7498/aps.59.5418
    [14] 张鹏飞, 李刚, 张玉驰, 杨榕灿, 郭龑强, 王军民, 张天才. 光致原子解吸附对冷原子磁光阱装载的动力学研究. 物理学报, 2010, 59(9): 6423-6429. doi: 10.7498/aps.59.6423
    [15] 邱 英, 何 军, 王彦华, 王 婧, 张天才, 王军民. 三维光学晶格中铯原子的装载与冷却. 物理学报, 2008, 57(10): 6227-6232. doi: 10.7498/aps.57.6227
    [16] 张鹏飞, 许忻平, 张海潮, 周善钰, 王育竹. 紫外光诱导原子脱附技术在单腔磁阱装载中的应用. 物理学报, 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
    [17] 汪丽蓉, 马 杰, 张临杰, 肖连团, 贾锁堂. 基于振幅调制的超冷铯原子高分辨光缔合光谱的实验研究. 物理学报, 2007, 56(11): 6373-6377. doi: 10.7498/aps.56.6373
    [18] 江开军, 李 可, 王 谨, 詹明生. Rb原子磁光阱中囚禁原子数目与实验参数的依赖关系. 物理学报, 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [19] 王彦华, 杨海菁, 张天才, 王军民. 用吸收法对铯原子磁光阱中冷原子数目的测量. 物理学报, 2006, 55(7): 3403-3407. doi: 10.7498/aps.55.3403
    [20] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量. 物理学报, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
计量
  • 文章访问数:  5437
  • PDF下载量:  307
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-27
  • 修回日期:  2016-02-14
  • 刊出日期:  2016-05-05

/

返回文章
返回