搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于激光辐照热效应的薄膜参数反演方法

陈桂波 张佳佳 王超群 毕娟

引用本文:
Citation:

一种基于激光辐照热效应的薄膜参数反演方法

陈桂波, 张佳佳, 王超群, 毕娟

A parameter inversion method of film based on thermal effects induced by laser irradiation

Chen Gui-Bo, Zhang Jia-Jia, Wang Chao-Qun, Bi Juan
PDF
导出引用
  • 本文研究并建立了一种基于激光辐照热效应的薄膜参数反演方法. 首先给出激光辐照薄膜产生温升问题的热传导理论模型, 并利用拉普拉斯变换得到了膜层和基底温度场的解析解; 然后以膜层和基底的导热系数为反演参数, 基于非线性共轭梯度算法给出反演基本原理及流程, 并推导得到了反演过程中灵敏度系数的解析表达式; 以aluminum, silver, copper和gold四种金属薄膜为例, 通过与有限元法的计算结果对比验证了温度场解析解的正确性; 最后结合四种金属薄膜进行了参数反演, 通过考察分析不同随机噪声等条件下的参数反演结果, 验证了本文方法在薄膜参数反演精度与反演效率等方面的有效性. 反演结果显示: 本文方法具有较高的反演精度和效率, 在迭代截止误差为10-7时只需用少于20次迭代就能收敛; 在测量数据中加入的随机噪声越小, 反演的迭代收敛次数就越少, 即使是在迭代初值与反演结果相差较大时, 用包含5% 随机噪声的测量数据反演也能快速收敛. 本文提出的薄膜参数反演方法不仅适用于反演导热系数, 也可扩展用于反演膜层反射系数或吸收率等参数, 具有一定的适用性. 本文方法对于激光加工或激光损伤过程中的参数反演及优化具有一定的指导意义.
    In this paper, we present an inversion estimation method of thin film parameters based on thermal effects induced by laser irradiation. Firstly, the theoretical model of classical Fourier heat conduction of thin film irradiated by laser is established, and the analytical solutions of temperature fields are obtained by using Laplace transform. Then, the inversion model and the iteration algorithm are established based on the nonlinear conjugate gradient method on condition that the thermal conductivities of the film and the substrate are selected as inversion parameters and the temperature fields of the thin film surface in different irradiation times are selected as measured data. In view of the fact that the sensitivity coefficient plays a decisive role in determining the accuracy and efficiency of the nonlinear conjugate gradient iteration inversion algorithm, we derive the closed form expressions of the sensitivity coefficients for the thermal conductivities of the film and the substrate based on the above analytical solutions of the temperature fields, and this closed form expressions can improve the accuracy and efficiency of the thin film parameter inversion significantly. Taking four kinds of metal films (aluminum, silver, copper and gold) with glass substrate for example, the accuracies of the analytical solutions of temperature fields are verified by comparing with the numerical results from the finite element method in the existing literature, and it can ensure the accuracies of the sensitivity coefficients in the process of iteration inversion. Finally, the thermal conductivities of the above four kinds of thin films are estimated by using the presented iteration inversion method. The accuracy and efficiency of the parameter inversion are verified by investigating and analyzing the inversion results of the parameters for different random noises and different iterative initial values. The inversion results show that this method has a high accuracy and efficiency, and it only needs less than 20 iteration times to convergence when the iteration stop error is 10-7. The smaller random noise is added in the measured data, and the less iteration times to convergence are needed. It can achieve higher convergence efficiency even in the iterative initial values from the inversion results that differ greatly for the case of 5% random noise. This inversion method of thin film parameters is not only applicable to the inversion of the thermal conductivity, but can also be used to inverse the parameters such as the reflection coefficient or the absorption coefficient. The presented method has a certain guiding significance for the parameters inversion and the parameters optimization in the process of the laser processing or the laser damage.
      通信作者: 毕娟, youbj_cn@sina.com
    • 基金项目: 长春理工大学青年基金(批准号: XQNJJ-2014-03)资助的课题.
      Corresponding author: Bi Juan, youbj_cn@sina.com
    • Funds: Project supported by the Young Science Foundation of Changchun University of Science and Technology, China (Grant No. XQNJJ-2014-03).
    [1]

    Wang Y, Liu X, Zhang Y G, Gu P F, Li Y Y, Li M Y 2007 Acta Phys. Sin. 56 2382 (in Chinese) [王颖, 刘旭, 章岳光, 顾培夫, 厉以宇, 李明宇 2007 物理学报 56 2382]

    [2]

    Zhao Y A, Wang T, Zhang D P, He H B, Shao J D, Fan Z X 2005 Acta Phot. Sin. 34 1372 (in Chinese) [赵元安, 王涛, 张东平, 贺洪波, 邵建达, 范正修 2005 光子学报 34 1372]

    [3]

    Wang B 2012 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [王斌 2012 博士学位论文(南京: 南京理工大学)]

    [4]

    Wang B, Dai G, Zhang H C, Ni X W, Shen Z H, Lu J 2011 Appl. Surf. Sci. 257 9977

    [5]

    Wang B, Zhang H C, Qin Y, Wang X, Ni X W, Shen Z H, Lu J 2011 Appl. Opt. 50 3435

    [6]

    Sun J Y 2007 M. S. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [孙金英 2007 硕士学位论文 (南京: 南京理工大学)]

    [7]

    Ozisik M N, Orlande H R B 2000 Inverse Heat Transfer: Fundamentals and Applications (New York: Taylor Francis) pp115-125

    [8]

    Yang C Y 1999 Appl. Math. Model. 23 469

    [9]

    Pedro H A N, Helcio R B O, Jean L B 2011 Int. Commun. Heat Mass Trans. 38 1172

    [10]

    Zhuang Q, Yu B, Jiang X Y 2015 Physica B 456 9

    [11]

    El-Adawi M K, Abdel-Naby M A, Shalaby S A 1995 Int. J. Heat Mass Transfer 38 947

    [12]

    Feng L X 2011 The Computational Methods and Applications of Inverse Problems (Harbin: Harbin Institute Technology Press) p9 (in Chinese) [冯立新 2011 反问题的计算方法及应用 (哈尔滨: 哈尔滨工业大学出版社) 第9页]

    [13]

    Abramowitz M, Stegun I 1964 Handbook of Mathematical Functions (New York: Dover Publications) pp297-299

    [14]

    Bi J, Zhang X H, Ni X W 2011 Acta Phys. Sin. 60 114210 (in Chinese) [(in Chinese) 毕娟, 张喜和, 倪晓武 2011 物理学报 60 114210]

  • [1]

    Wang Y, Liu X, Zhang Y G, Gu P F, Li Y Y, Li M Y 2007 Acta Phys. Sin. 56 2382 (in Chinese) [王颖, 刘旭, 章岳光, 顾培夫, 厉以宇, 李明宇 2007 物理学报 56 2382]

    [2]

    Zhao Y A, Wang T, Zhang D P, He H B, Shao J D, Fan Z X 2005 Acta Phot. Sin. 34 1372 (in Chinese) [赵元安, 王涛, 张东平, 贺洪波, 邵建达, 范正修 2005 光子学报 34 1372]

    [3]

    Wang B 2012 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [王斌 2012 博士学位论文(南京: 南京理工大学)]

    [4]

    Wang B, Dai G, Zhang H C, Ni X W, Shen Z H, Lu J 2011 Appl. Surf. Sci. 257 9977

    [5]

    Wang B, Zhang H C, Qin Y, Wang X, Ni X W, Shen Z H, Lu J 2011 Appl. Opt. 50 3435

    [6]

    Sun J Y 2007 M. S. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [孙金英 2007 硕士学位论文 (南京: 南京理工大学)]

    [7]

    Ozisik M N, Orlande H R B 2000 Inverse Heat Transfer: Fundamentals and Applications (New York: Taylor Francis) pp115-125

    [8]

    Yang C Y 1999 Appl. Math. Model. 23 469

    [9]

    Pedro H A N, Helcio R B O, Jean L B 2011 Int. Commun. Heat Mass Trans. 38 1172

    [10]

    Zhuang Q, Yu B, Jiang X Y 2015 Physica B 456 9

    [11]

    El-Adawi M K, Abdel-Naby M A, Shalaby S A 1995 Int. J. Heat Mass Transfer 38 947

    [12]

    Feng L X 2011 The Computational Methods and Applications of Inverse Problems (Harbin: Harbin Institute Technology Press) p9 (in Chinese) [冯立新 2011 反问题的计算方法及应用 (哈尔滨: 哈尔滨工业大学出版社) 第9页]

    [13]

    Abramowitz M, Stegun I 1964 Handbook of Mathematical Functions (New York: Dover Publications) pp297-299

    [14]

    Bi J, Zhang X H, Ni X W 2011 Acta Phys. Sin. 60 114210 (in Chinese) [(in Chinese) 毕娟, 张喜和, 倪晓武 2011 物理学报 60 114210]

计量
  • 文章访问数:  4487
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-20
  • 修回日期:  2016-04-14
  • 刊出日期:  2016-06-05

/

返回文章
返回