搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于第一性原理计算Rh含量对Ir-Rh合金力学性能的影响

潘新东 魏燕 蔡宏中 祁小红 郑旭 胡昌义 张诩翔

引用本文:
Citation:

基于第一性原理计算Rh含量对Ir-Rh合金力学性能的影响

潘新东, 魏燕, 蔡宏中, 祁小红, 郑旭, 胡昌义, 张诩翔

Effect of Rh content on the mechanical properties of Ir-Rh alloy based on the first principle

Pan Xin-Dong, Wei Yan, Cai Hong-Zhong, Qi Xiao-Hong, Zheng Xu, Hu Chang-Yi, Zhang Xu-Xiang
PDF
导出引用
  • 采用密度泛函理论的第一性原理平面波赝势方法,基于虚拟晶体势函数近似,通过计算Ir-xRh(x=0,5,10,20,30,40,50,60,70,80,90,100)合金的弹性常数、体积模量、剪切模量、杨氏模量、泊松比等力学常数、电荷密度和能态密度,研究Rh含量对Ir-Rh合金力学性能的影响. 通过实验对计算结果加以验证,证明将虚晶近似法运用在Ir-Rh合金力学性能的计算中是合理的. 研究结果表明,Ir-Rh合金的强度和硬度随Rh含量的升高迅速增大,在Ir-10 Rh 处达到最大值后快速下降到Ir-40 Rh处后先缓慢上升再缓慢下降. Rh的添加会引起材料脆化,其脆性大小随着Rh含量的升高先增大后减小,在Ir-50 Rh处达到最大值. 另外,计算了纯Ir,Ir-10 Rh,Ir-50 Rh、纯Rh的电荷密度、Ir和Rh的差分电荷密度以及能态密度,结果表明在铱铑合金中存在一种伪共价键,从而导致其力学性质的异常.
    Platinum metal Ir-Rh alloy presents a promising candidate as future ultra-high-temperature gas turbine material due to its excellent high-temperature properties. In this paper, the mechanical properties of Ir-xRh (x=0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100) alloys with different rhodium content are investigated. Self-consistent, periodic, density functional theory calculations, Perdew-Burke-Ernzerhof functional, virtual crystal approximation are employed to calculate the elastic constants C11, C12, C44, Cauchy pressure (C12-C44), Young modulus E, shear modulus G, bulk modulus B and the ratio G/B, anisotropic factor A, and strain energy of dislocation per unit length. These parameters are adopted to characterize and assess the effect of Rh content on the mechanical property of Ir-Rh alloy. The results indicate that it is reasonable to use the virtual crystal approximation to calculate the mechanical properties of Ir-Rh alloys. The Young modulus E, shear modulus G and bulk modulus B increase rapidly with the increase of rhodium content, and the maximum value is reached at rhodium content 10%. Then it fast dereases down to a minimum value at 40% after the slowly rises and then slowly drops down. It is found to be in remarkable agreement with the strain energy of dislocation per unit length. This indirectly explains its changing trend. The Cauchy pressure (C12-C44), G/B value and the Poisson's ratio reflect the change of the brittleness of the alloy. Therefore, we can come to a conclusion: the addition of Rh can cause the brittleness of the Ir-Rh alloys. The value of the brittleness first increases and then decreases with the increase of Rh content, and its maximum value is reached at 50%. The charge densities and the densities of states of pure Ir, Ir-10Rh, Ir-50Rh and pure Rh are calculated and compared. At the same time, we also establish a 2 2 1 solid solution supercell structure of Ir-Rh alloy and calculate its differential charge density. The results show that in the Ir-Rh alloys exists a pseudo covalent bond, which leads to the abnormal mechanical properties. The pseudo covalent bond is not a metal bond nor a covalent bond but a kind of transition bond or a mixed type. Finally, the experimental results show that the calculation method is reasonable and it can play an important role in understanding the microscopic mechanism of the abnormal mechanical properties of Ir-Rh alloys.
      通信作者: 魏燕, hcy@ipm.com.cn;weiyan@ipm.com.cn ; 胡昌义, hcy@ipm.com.cn;weiyan@ipm.com.cn
    • 基金项目: 国家自然科学基金(批准号:51361014)、云南省应用基础重点项目(批准号:2016FA053)、 云南省技术创新人才(批准号:2013HB112)和稀贵金属综合利用新技术国家重点实验室开放课题资助(批准号:SKL-SPM-201527)资助的课题.
      Corresponding author: Wei Yan, hcy@ipm.com.cn;weiyan@ipm.com.cn ; Hu Chang-Yi, hcy@ipm.com.cn;weiyan@ipm.com.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51361014), Yunnan Applied Basic Research Projects (Grant No. 2016FA053), the Yunnan Innovator Training Project, China (Grant No. 2013HB112), and the Fund of the State Key Laboratory of Advanced Technologyies for Comprehensive Utilization of Platinum Metals, China (Grant No. SKL-SPM-201527).
    [1]

    Yamabe-mitarai Y, Ro Y, Maruko T, Harada H 1998 Metall. Mater. Trans. A 29 537

    [2]

    Ohriner E K 2008 Platinum Met. Rev. 52 186

    [3]

    Xiang C S, Ge Y, Zhang H L, Li Z F, Huang Y P, Tang H P {2009 Mater. Rev. 23 7 (in Chinese) [向长淑, 葛渊, 张晗亮, 李增峰, 黄愿平, 汤慧萍 2009 材料导报 23 7]

    [4]

    Chen K, Zhao L R, Tse J S, Rodgers J R {2004 Phys. Lett. A 33 400

    [5]

    Sekido N, Hoshino A, Fukuzaki M, Maruko T, Yamabe-Mitarai Y 2011 J. Phase Equilib. Diff. 32 219

    [6]

    Li D H, Su W J, Zhu X L 2012 Acta Phys. Sin. 61 23103 (in Chinese) [李德华, 苏文晋, 朱晓玲 2012 物理学报 61 23103]

    [7]

    Wang Y, Lu T C, Wang Y Z, Yue S L, Qi J Q, Pan L 2012 Acta Phys. Sin. 61 167101 (in Chinese) [王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊 2012 物理学报 61 167101]

    [8]

    Chen S, Lu J S, Xie M, Xia L, Pan Y, Hu J Q {2015 Rare Metals 39 276 (in Chinese) [陈松, 陆建生, 谢明, 夏璐, 潘勇, 胡洁琼 2015 稀有金属 39 276]

    [9]

    Liu Y C, Zhou D W, Gao L J, Peng P 2013 Rare Metal Mat. Eng. 42 578 (in Chinese) [刘友成, 周惦武, 高丽洁, 彭平 2013 稀有金属材料与工程 42 578]

    [10]

    Wang L X, Yao S, Wen B {2014 J. At. Mol. Phys. 31 305 (in Chinese) [王兰馨, 姚山, 温斌 2014 原子与分子物理学报 31 305]

    [11]

    Liu Y C, Zhou D W, Gao L J {2013 Rare Metals and Cemented Carbides 41 47 (in Chinese) [刘友成, 周惦武, 高丽洁 2013 稀有金属与硬质合金 41 47]

    [12]

    Chen L {2012 Rare Metal Mat. Eng. 41 290 (in Chinese) [陈律 2012 稀有金属材料与工程 41 290]

    [13]

    Ding Y C, Xiao B 2011 Acta Phys. Chim. Sin. 27 1261 (in Chinese) [丁迎春, 肖冰 2011 物理化学学报 27 1261]

    [14]

    Wang Y L, Cui H L, Yu B R, Chen X R 2008 Commun. Theor. Phys. 49 489

    [15]

    Hartnett T M, Maguire E A, Gentilman R L, Corbin N D, Mccauley J M 1982 Cera. Eng. Sci. Proc. 3 67

    [16]

    L L H 2013 M. S. Dissertation (Kunming: Kunming University of Science and Technology) (in Chinese) [吕连灏 2013 硕士学位论文 (昆明: 昆明理工大学)]

    [17]

    Wang P 2014 M. S. Dissertation (Kunming: Kunming University of Science and Technology) (in Chinese) [王鹏 2014 硕士学位论文 (昆明: 昆明理工大学)]

    [18]

    Hu J Q 2012 M. S. Thesis (Kunming: Kunming Institute of Precious Metals) (in Chinese) [胡洁琼 2012 硕士学位论文 (昆明:昆明贵金属研究所)]

    [19]

    Liu Y, Chen D Q, Chen J L, Dai H, Li Z L, Luo X M, Li W, Xu K 2014 Precious Metal. 35 40 (in Chinese) [刘毅, 陈登权, 陈家林, 戴华, 李泽丽, 罗锡明, 李伟, 许昆 2014 贵金属 35 40]

    [20]

    Wen X Z 1996 Crystal Defects and Metal Strength (Changsha: Central South University Press) p55 (in Chinese) [文先哲 1996 晶体缺陷与金属强度 (长沙: 中南大学出版社)第55页]

    [21]

    Feng D 1998 Metal Physics (Beijing:Science Press) p1 (in Chinese) [冯端 1998 金属物理学(北京: 科学出版社) 第1页]

    [22]

    Pugh S F 1954 Philos. Mag. 45 823

    [23]

    Cornish L A, Svss R, Douglas A, Chown L H, Glaner L 2009 Platinum Metals Rev. 53 2

    [24]

    Zhang K, Jiang Y Y, Li K S, Li H, Yu D B 2014 J. Alloy. Compd. 611 386

    [25]

    Wei Z, Zhai D, Shao X H, Lu Y, Zhang P 2015 Chin. Phys. B 24 043102

    [26]

    Akola J, Jones R O 2009 Phys. Rev. B 79 134118

    [27]

    Zhou W, Wu H, Yildirim T 2007 Phys. Rev. B 76 184113

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

  • [1]

    Yamabe-mitarai Y, Ro Y, Maruko T, Harada H 1998 Metall. Mater. Trans. A 29 537

    [2]

    Ohriner E K 2008 Platinum Met. Rev. 52 186

    [3]

    Xiang C S, Ge Y, Zhang H L, Li Z F, Huang Y P, Tang H P {2009 Mater. Rev. 23 7 (in Chinese) [向长淑, 葛渊, 张晗亮, 李增峰, 黄愿平, 汤慧萍 2009 材料导报 23 7]

    [4]

    Chen K, Zhao L R, Tse J S, Rodgers J R {2004 Phys. Lett. A 33 400

    [5]

    Sekido N, Hoshino A, Fukuzaki M, Maruko T, Yamabe-Mitarai Y 2011 J. Phase Equilib. Diff. 32 219

    [6]

    Li D H, Su W J, Zhu X L 2012 Acta Phys. Sin. 61 23103 (in Chinese) [李德华, 苏文晋, 朱晓玲 2012 物理学报 61 23103]

    [7]

    Wang Y, Lu T C, Wang Y Z, Yue S L, Qi J Q, Pan L 2012 Acta Phys. Sin. 61 167101 (in Chinese) [王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊 2012 物理学报 61 167101]

    [8]

    Chen S, Lu J S, Xie M, Xia L, Pan Y, Hu J Q {2015 Rare Metals 39 276 (in Chinese) [陈松, 陆建生, 谢明, 夏璐, 潘勇, 胡洁琼 2015 稀有金属 39 276]

    [9]

    Liu Y C, Zhou D W, Gao L J, Peng P 2013 Rare Metal Mat. Eng. 42 578 (in Chinese) [刘友成, 周惦武, 高丽洁, 彭平 2013 稀有金属材料与工程 42 578]

    [10]

    Wang L X, Yao S, Wen B {2014 J. At. Mol. Phys. 31 305 (in Chinese) [王兰馨, 姚山, 温斌 2014 原子与分子物理学报 31 305]

    [11]

    Liu Y C, Zhou D W, Gao L J {2013 Rare Metals and Cemented Carbides 41 47 (in Chinese) [刘友成, 周惦武, 高丽洁 2013 稀有金属与硬质合金 41 47]

    [12]

    Chen L {2012 Rare Metal Mat. Eng. 41 290 (in Chinese) [陈律 2012 稀有金属材料与工程 41 290]

    [13]

    Ding Y C, Xiao B 2011 Acta Phys. Chim. Sin. 27 1261 (in Chinese) [丁迎春, 肖冰 2011 物理化学学报 27 1261]

    [14]

    Wang Y L, Cui H L, Yu B R, Chen X R 2008 Commun. Theor. Phys. 49 489

    [15]

    Hartnett T M, Maguire E A, Gentilman R L, Corbin N D, Mccauley J M 1982 Cera. Eng. Sci. Proc. 3 67

    [16]

    L L H 2013 M. S. Dissertation (Kunming: Kunming University of Science and Technology) (in Chinese) [吕连灏 2013 硕士学位论文 (昆明: 昆明理工大学)]

    [17]

    Wang P 2014 M. S. Dissertation (Kunming: Kunming University of Science and Technology) (in Chinese) [王鹏 2014 硕士学位论文 (昆明: 昆明理工大学)]

    [18]

    Hu J Q 2012 M. S. Thesis (Kunming: Kunming Institute of Precious Metals) (in Chinese) [胡洁琼 2012 硕士学位论文 (昆明:昆明贵金属研究所)]

    [19]

    Liu Y, Chen D Q, Chen J L, Dai H, Li Z L, Luo X M, Li W, Xu K 2014 Precious Metal. 35 40 (in Chinese) [刘毅, 陈登权, 陈家林, 戴华, 李泽丽, 罗锡明, 李伟, 许昆 2014 贵金属 35 40]

    [20]

    Wen X Z 1996 Crystal Defects and Metal Strength (Changsha: Central South University Press) p55 (in Chinese) [文先哲 1996 晶体缺陷与金属强度 (长沙: 中南大学出版社)第55页]

    [21]

    Feng D 1998 Metal Physics (Beijing:Science Press) p1 (in Chinese) [冯端 1998 金属物理学(北京: 科学出版社) 第1页]

    [22]

    Pugh S F 1954 Philos. Mag. 45 823

    [23]

    Cornish L A, Svss R, Douglas A, Chown L H, Glaner L 2009 Platinum Metals Rev. 53 2

    [24]

    Zhang K, Jiang Y Y, Li K S, Li H, Yu D B 2014 J. Alloy. Compd. 611 386

    [25]

    Wei Z, Zhai D, Shao X H, Lu Y, Zhang P 2015 Chin. Phys. B 24 043102

    [26]

    Akola J, Jones R O 2009 Phys. Rev. B 79 134118

    [27]

    Zhou W, Wu H, Yildirim T 2007 Phys. Rev. B 76 184113

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

  • [1] 王坤, 乔英杰, 张晓红, 王晓东, 郑婷, 白成英, 张一鸣, 都时禹. 理想拉伸/剪切应变对U3Si2化学键键长及电荷密度分布影响的第一性原理研究. 物理学报, 2022, 71(22): 227102. doi: 10.7498/aps.71.20221210
    [2] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [3] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [4] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [5] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [6] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [7] 易军. 非晶纤维的制备和力学行为. 物理学报, 2017, 66(17): 178102. doi: 10.7498/aps.66.178102
    [8] 陈华, 李保卫, 赵鸣, 张雪峰, 贾晓林, 杜永胜. La3+存在形式对白云鄂博稀选尾矿微晶玻璃性能的影响. 物理学报, 2015, 64(19): 196201. doi: 10.7498/aps.64.196201
    [9] 刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳. 粗晶和纳米晶Sm3Co合金的制备及其性能研究. 物理学报, 2014, 63(9): 098102. doi: 10.7498/aps.63.098102
    [10] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [11] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [12] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [13] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构. 物理学报, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [14] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [15] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [16] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [17] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [18] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [19] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
    [20] 缪江平, 吴宗汉, 孙承休, 孙岳明. 表面等离极化激元对电荷输运影响的自洽场理论研究. 物理学报, 2004, 53(8): 2728-2733. doi: 10.7498/aps.53.2728
计量
  • 文章访问数:  5319
  • PDF下载量:  302
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-15
  • 修回日期:  2016-05-23
  • 刊出日期:  2016-08-05

/

返回文章
返回