搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑噪声源深度分布的海洋环境噪声模型及地声参数反演

江鹏飞 林建恒 孙军平 衣雪娟

引用本文:
Citation:

考虑噪声源深度分布的海洋环境噪声模型及地声参数反演

江鹏飞, 林建恒, 孙军平, 衣雪娟

Ocean ambient noise model considering depth distribution of source and geo-acoustic inversion

Jiang Peng-Fei, Lin Jian-Heng, Sun Jun-Ping, Yi Xue-Juan
PDF
导出引用
  • 考虑到海洋环境噪声源深度分布不集中,建立了噪声源随深度分布的海洋环境噪声模型,分析了源深度对噪声场垂向特征的影响并从简正波角度予以解释,发现海底声阻抗和声源深度都显著影响由海洋环境噪声获得的等效海底反射损失大掠射角部分,进而将该模型用于地声参数反演.两段实测噪声数据200–525 Hz频段的反演结果表明:基于海洋环境噪声的地声参数反演最优值与声传播的反演结果相近;源平均深度最优值随频率增加有变小的趋势,说明随频率增加环境噪声主要贡献源逐渐由航船转为风浪;当海况大于3级时,400 Hz以上频段噪声源深度平均值很小,与Monahan气泡理论的描述一致.
    An ocean ambient noise model is established considering source depth distribution. The model is used to analyze the effect of source depth on the vertical characteristics of ambient noise field. The analyses are explained and validated by normal mode theory. The energy of normal mode excited changes with source depth. Effects of different order normal modes are different. The high order modes raise up the equivalent seabed reflection loss, whereas the low order modes depress it. It is found that the seabed sound speed, density and source depth all have significant influences on equivalent seabed reflection loss at large grazing angles. So the source depth should be taken into account and the model is used in geo-acoustic inversion. Two sets of experimental data in a bandwidth of 200-525 Hz are used to obtain geo-acoustic parameters. The results show that the geo-acoustic parameters inverted from ocean ambient noise and from sound propagation data are similar. The mean value of inverted source depth tends to be smaller as frequency increases, which demonstrates that wind waves become dominant over ship noise. The average of inverted source depth values in the band(>400 Hz) is very small when sea state is higher than grade 3, which is consistent with the result from the Monahan's bubble theory.
      通信作者: 林建恒, linjh@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11174314)和中船重工715所重点实验室开放基金(合同号:KF201502)资助的课题.
      Corresponding author: Lin Jian-Heng, linjh@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 11174314), and the Open-end Funds of the Key Laboratory of 715th Research Institute China Shipbuilding Industry Corporation(Grant No. KF201502).
    [1]

    Wenz G M 1962 J. Acoust. Soc. Am. 34 1936

    [2]

    Monahan E C 1988 Sea Surface Sound:Natural Mechanisms of Surface Generated Noise in the Ocean(Dordrecht:Kluwer Academic Publisher) p85

    [3]

    Kolovayev D A 1976 Oceanology 15 659

    [4]

    Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732

    [5]

    Cox H 1973 J. Acoust. Soc. Am. 54 1289

    [6]

    Kuperman W A, Ingenito F 1980 J. Acoust. Soc. Am. 67 1988

    [7]

    Buckingham M J, Carbone N M 1997 J. Acoust. Soc. Am. 102 2637

    [8]

    He L 2007 Ph. D. Dissertation(Beijing:Institute of Acoustics, Chinese Academy of Sciences)(in Chinese)[何利2007博士学位论文(北京:中国科学院声学研究所)]

    [9]

    Deane G B, Buckingham M J, Tindle C T 1998 J. Acoust. Soc. Am. 103 801

    [10]

    Aredov A A, Furduev A V 1994 Acoust. Phys 40 176

    [11]

    Arvelo J I 2008 J. Acoust. Soc. Am. 123 679

    [12]

    Quijano J E, Dosso S E, Dettmer J, Zurk L M, Siderius M 2012 J. Acoust. Soc. Am. 131 2659

    [13]

    Luo W Y 2002 Ph. D. Dissertation (Beijing:Institute of Acoustics, Chinese Academy of Sciences)(in Chinese)[骆文于2002博士学位论文(北京:中国科学院声学研究所)]

    [14]

    Li B H 2004 M. S. Thesis (Qingdao:Ocean University of China)(in Chinese)[李丙辉2002硕士学位论文(青岛:中国海洋大学)]

    [15]

    Yin B Y, Ma L, Lin J H 2012 Acta Acoust. 37 424 (in Chinese)[殷宝友, 马力, 林建恒2012声学学报37 424]

    [16]

    Jiang P F, Lin J H, Ma L, Yin B Y, Jiang G J 2016 Acta Acoust. 41 56 (in Chinese)[江鹏飞, 林建恒, 马力, 殷宝友, 蒋国健2016声学学报41 56]

    [17]

    Harrison C H 1997 Appl. Acoust. 51 289

    [18]

    Jesen F B, Kuperman W A, Porter M B, Schmidt H, 2011 Computional Ocean Acoustics(New York:Springer-Verlag) pp17-18

    [19]

    Harrison C H, Simons D G 2002 J. Acoust. Soc. Am. 112 1377

    [20]

    Jesen F B, Kuperman W A, Porter M B, Schmidt H, 2011 Computional Ocean Acoustics(New York:Springer-Verlag) pp46-47

    [21]

    Duda T F, Preisig J C 1999 IEEE J. Oceanic Eng. 24 16

    [22]

    Dosso S E, Wilmut M J, Lapinski A S 2001 IEEE J Oceanic Eng. 21 324

    [23]

    Hamilton E L 1980 J. Acoust. Soc. Am. 68 1313

    [24]

    Lu L C, Ma L 2008 Tech Acoust. 27 56 (in Chinese)[鹿力成, 马力2008声学技术27 56]

  • [1]

    Wenz G M 1962 J. Acoust. Soc. Am. 34 1936

    [2]

    Monahan E C 1988 Sea Surface Sound:Natural Mechanisms of Surface Generated Noise in the Ocean(Dordrecht:Kluwer Academic Publisher) p85

    [3]

    Kolovayev D A 1976 Oceanology 15 659

    [4]

    Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732

    [5]

    Cox H 1973 J. Acoust. Soc. Am. 54 1289

    [6]

    Kuperman W A, Ingenito F 1980 J. Acoust. Soc. Am. 67 1988

    [7]

    Buckingham M J, Carbone N M 1997 J. Acoust. Soc. Am. 102 2637

    [8]

    He L 2007 Ph. D. Dissertation(Beijing:Institute of Acoustics, Chinese Academy of Sciences)(in Chinese)[何利2007博士学位论文(北京:中国科学院声学研究所)]

    [9]

    Deane G B, Buckingham M J, Tindle C T 1998 J. Acoust. Soc. Am. 103 801

    [10]

    Aredov A A, Furduev A V 1994 Acoust. Phys 40 176

    [11]

    Arvelo J I 2008 J. Acoust. Soc. Am. 123 679

    [12]

    Quijano J E, Dosso S E, Dettmer J, Zurk L M, Siderius M 2012 J. Acoust. Soc. Am. 131 2659

    [13]

    Luo W Y 2002 Ph. D. Dissertation (Beijing:Institute of Acoustics, Chinese Academy of Sciences)(in Chinese)[骆文于2002博士学位论文(北京:中国科学院声学研究所)]

    [14]

    Li B H 2004 M. S. Thesis (Qingdao:Ocean University of China)(in Chinese)[李丙辉2002硕士学位论文(青岛:中国海洋大学)]

    [15]

    Yin B Y, Ma L, Lin J H 2012 Acta Acoust. 37 424 (in Chinese)[殷宝友, 马力, 林建恒2012声学学报37 424]

    [16]

    Jiang P F, Lin J H, Ma L, Yin B Y, Jiang G J 2016 Acta Acoust. 41 56 (in Chinese)[江鹏飞, 林建恒, 马力, 殷宝友, 蒋国健2016声学学报41 56]

    [17]

    Harrison C H 1997 Appl. Acoust. 51 289

    [18]

    Jesen F B, Kuperman W A, Porter M B, Schmidt H, 2011 Computional Ocean Acoustics(New York:Springer-Verlag) pp17-18

    [19]

    Harrison C H, Simons D G 2002 J. Acoust. Soc. Am. 112 1377

    [20]

    Jesen F B, Kuperman W A, Porter M B, Schmidt H, 2011 Computional Ocean Acoustics(New York:Springer-Verlag) pp46-47

    [21]

    Duda T F, Preisig J C 1999 IEEE J. Oceanic Eng. 24 16

    [22]

    Dosso S E, Wilmut M J, Lapinski A S 2001 IEEE J Oceanic Eng. 21 324

    [23]

    Hamilton E L 1980 J. Acoust. Soc. Am. 68 1313

    [24]

    Lu L C, Ma L 2008 Tech Acoust. 27 56 (in Chinese)[鹿力成, 马力2008声学技术27 56]

  • [1] 韦宜政, 孙超, 朱启轩. 浅海矢量声场极化特性的深度分布规律. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231767
    [2] 柳云峰, 李整林, 秦继兴, 吴双林, 王梦圆, 周江涛. 东印度洋海域风和降雨对环境噪声的影响. 物理学报, 2022, 71(20): 204303. doi: 10.7498/aps.71.20220615
    [3] 任超, 黄益旺, 夏峙. 宽频带海洋环境噪声矢量场空间相关特性建模. 物理学报, 2022, 71(2): 024301. doi: 10.7498/aps.71.20211518
    [4] 李明杨, 赵航芳, 孙超. 风成噪声背景下垂直阵阵列信噪比随声源深度的变化规律. 物理学报, 2022, 71(4): 044302. doi: 10.7498/aps.71.20211654
    [5] 任超, 黄益旺, 夏峙. 宽频带海洋环境噪声矢量场空间相关特性建模. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211518
    [6] 李明杨, 赵航芳, 孙超. 风成噪声背景下垂直阵阵列信噪比随声源深度的变化规律. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211654
    [7] 侯森, 胡长青, 赵梅. 利用声衰减反演气泡群分布的方法研究. 物理学报, 2021, 70(4): 044301. doi: 10.7498/aps.70.20201385
    [8] 李风华, 王翰卓. 利用随机多项式展开的海底声学参数反演方法. 物理学报, 2021, 70(17): 174305. doi: 10.7498/aps.70.20210119
    [9] 李赫, 郭新毅, 马力. 利用海洋环境噪声空间特性估计浅海海底分层结构及地声参数. 物理学报, 2019, 68(21): 214303. doi: 10.7498/aps.68.20190824
    [10] 夏麾军, 马远良, 刘亚雄. 海洋环境噪声场对称性分析及噪声消除方法. 物理学报, 2016, 65(14): 144302. doi: 10.7498/aps.65.144302
    [11] 郭晓乐, 杨坤德, 马远良. 一种基于简正波模态频散的远距离宽带海底参数反演方法. 物理学报, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [12] 屈科, 胡长青, 赵梅. 利用时域波形快速反演海底单参数的方法. 物理学报, 2013, 62(22): 224303. doi: 10.7498/aps.62.224303
    [13] 周宇璐, 李仁顺, 张宝玲, 邓爱红, 侯氢. 材料中He深度分布演化的Monte Carlo模拟研究. 物理学报, 2011, 60(6): 060702. doi: 10.7498/aps.60.060702
    [14] 杨坤德, 马远良. 利用海底反射信号进行地声参数反演的方法. 物理学报, 2009, 58(3): 1798-1805. doi: 10.7498/aps.58.1798
    [15] 陆 挺, 周宏余, 丁晓纪, 汪新福, 朱光华. 低能离子注入植物种子的深度分布及生物效应机理研究. 物理学报, 2005, 54(10): 4822-4826. doi: 10.7498/aps.54.4822
    [16] 骆建, 殷宏, 陶琨. 连续过渡型多晶物相深度分布的X射线衍射测试方法. 物理学报, 1995, 44(11): 1788-1792. doi: 10.7498/aps.44.1788
    [17] 王震遐, 潘冀生, 章骥平, 朱福英. Al-Sn合金表面元素深度分布的局域性. 物理学报, 1994, 43(11): 1816-1820. doi: 10.7498/aps.43.1816
    [18] 邵其鋆, 潘正瑛, 陈建新, 霍裕昆. 聚变α粒子对第一壁辐照损伤的蒙特-卡罗研究(Ⅲ)——固体中位移原子深度分布. 物理学报, 1992, 41(9): 1547-1553. doi: 10.7498/aps.41.1547
    [19] 刘家瑞, 朱沛然, 封爱国, 李大万. F离子弹性反冲法分析固体中H的深度分布. 物理学报, 1988, 37(1): 71-76. doi: 10.7498/aps.37.71
    [20] 陈永祺, 毛允静. X射线发射深度分布φ(ρz)计算与电子探针定量分析. 物理学报, 1984, 33(5): 621-628. doi: 10.7498/aps.33.621
计量
  • 文章访问数:  5238
  • PDF下载量:  266
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-13
  • 修回日期:  2016-10-11
  • 刊出日期:  2017-01-05

/

返回文章
返回