搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人类心室组织中波斑图引起的后除极化研究

王小艳 汪芃 唐国宁

引用本文:
Citation:

人类心室组织中波斑图引起的后除极化研究

王小艳, 汪芃, 唐国宁

Afterdepolarlizations induced by wave pattern in human ventricular tissue

Wang Xiao-Yan, Wang Peng, Tang Guo-Ning
PDF
导出引用
  • 突然的心脏死亡常常由心脏的心律失常引起,而心律失常常与后除极化有关.本文采用人类心脏模型研究了二维心肌组织中存在螺旋波或其他波斑图下后除极化的发生,通过改变L型钙电导和快钾电导让螺旋波演化,观察后除极化在空间的分布.研究发现:在单细胞和一维情况下不出现后除极化时,螺旋波可导致相II型和相III型早期后除极化、延迟后除极化、增强的自动性,以及延时激发和延时增强自动性的出现;还观察到螺旋波导致膜电位在动作电位I期出现弱振荡;后除极化一般出现在螺旋波波核区域,它是由螺旋波的相奇异点引起.后除极化也可以分布在更大的范围,当参数选取适当时,出现早期后除极化、延迟后除极化、增强自动性的空间点在空间呈螺旋线分布,展示记忆效应.通过观察各种离子电流变化发现:当激发细胞的钠电流很小时可诱发L型钙电流、钠钙交换电流的增大和慢钾电流、快钾电流的减少,导致各种后除极化的产生,因此增大钠电流可有效抑制后除极化的发生.
    Recently, arrhythmogenic condition has attracted special attention of scientists in the field of different disciplines because sudden cardiac death is often caused by cardiac arrhythmia. Arrhythmias can have different underlying causes. But the underlying mechanism of arrhythmia is not fully understood due to cardiac complexity. As is well known, one particular group of arrhythmias is often associated with the afterdepolarizations. So far, afterdepolarizations have been studied mainly in isolated cardiac cells. The question how the afterdepolarization is produced at a tissue level has not been widely studied yet. In this paper, we use the model of human heart to study how spiral wave or other wave patterns induces the afterdepolarizations in two-dimensional myocardial tissue. We try to obtain the instantaneous spatial distribution of afterdepolarizations by changing the L-type calcium and fast potassium conductance. In order to avoid bringing in afterdepolarizations, the applied parameters avoid evoking the afterdepolarizations at a single-cell and one-dimensional tissues level. The numerical simulation results show that spiral wave and other wave patterns can cause the phase II and III early afterdepolarizations, the delayed afterdepolarization, the enhanced automaticity, the delayed excitation and the delayed enhanced automaticity to occur. Moreover, we observe the weak oscillation of the membrane potential during the phase I of action potential. The afterdepolarizations generally occur in the spiral-wave core. They are generated by the phase singularity of spiral wave. The afterpolarizations can also appear in other region of spiral wave pattern. The afterpolarization is characterized by scattered distribution. When parameters are appropriately chosen, we observe the outbreaks of different afterpolarizations under the state of spiral wave. The corresponding spatial and temporal distributions of the early afterdepolarizations, the delayed afterdepolarizations, and the enhanced automaticity become spiral line distributions, which exhibits memory effect. It is shown that the outbreaks of afterdepolarizations in the system do not necessarily lead to the breakup of spiral wave. By observing the changes of different ion currents we find that when sodium current exciting cell is very small, the weak excitation with small sodium current can cause the L-type calcium current and the sodium calcium exchange current to increase, and the slow potassium current and rapid potassium current to decrease, leading to the occurrences of various afterdepolarizations. Therefore, increasing sodium current can effectively suppress the occurrences of afterdepolarizations.
      通信作者: 唐国宁, tangguoning@sohu.com
    • 基金项目: 国家自然科学基金(批准号:11565005,11365003)资助的课题.
      Corresponding author: Tang Guo-Ning, tangguoning@sohu.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11565005, 11365003).
    [1]

    Gray R A, Jalife J, Panfilov A, Baxter W T, Cabo C, Davidenko J M, Pertsov A M 1995 Circulation 91 2454

    [2]

    Fenton F H, Cherry E M, Hastings H M, Evans S J 2002 Chaos 12 852

    [3]

    Ouyan Q 2001 Physics 30 30 (in Chinese) [欧阳颀 2001 物理 30 30]

    [4]

    Keldermann R H, Ten Tusscher K H W J, Nash M P, Bradley C P, Hren R, Taggart P, Panfilov A V 2009 Am. J. Physiol. Heart Circ. Physiol. 296 H370

    [5]

    Qu Z, Xie F, Garfinkel A, Weiss J N 2000 Ann. Biomed. Eng. 28 755

    [6]

    Courtemanche M 1996 Chaos 6 579

    [7]

    Shajahan T K, Nayak A R, Pandit R 2009 PLoS One 4 e4738

    [8]

    Kazbanov I V, Clayton R H, Nash M P, Bradley C P, Paterson D J, Hayward M P, Taggart P, Panfilov A V 2014 PLoS Comput. Biol. 10 e1003891

    [9]

    Priebe L, Beuckelmann D J 1998 Circ. Res. 82 1206

    [10]

    Ten Tusscher K H W J, Noble D, Noble P J, Panfilov A V 2004 Am. J. Physiol. Heart Circ. Physiol. 286 H1573

    [11]

    Iyer V, Mazhari R, Winslow R L 2004 Biophys. J. 87 1507

    [12]

    Grandi E, Pasqualini F S, Bers D M 2010 J. Mol. Cell Cardiol. 48 112

    [13]

    O'Hara T, Virg L, Varr A, Rudy Y 2011 PLoS Comput. Biol. 7 e1002061

    [14]

    Ten Tusscher K H W J, Hren R, Panfilov A V 2007 Circ. Res. 100 e87

    [15]

    Zimik S, Vandersickel N, Nayak A R, Panfilov A V, Pandit R 2015 PLoS One 10 e0130632

    [16]

    de Ferrari G M, Viola M, D'Amato E, Antolini R, Forti S 1995 Circulation 91 2510

    [17]

    Xie L H, Chen F, Karagueuzian H S, Weiss J N 2009 Circ. Res. 104 79

    [18]

    Karagueuzian H S, Nguyen T P, Qu Z, Weiss J N 2013 Front. Physiol. 4 1

    [19]

    Schillinger K J, Patel V V 2012 J. Geriatr. Cardiol. 9 379

    [20]

    Zhao Z, Wen H, Fefelova N, Allen C, Baba A, Matsuda T, Xie L H 2012 Am. J. Physiol. Heart Circ. Physiol. 302 H1636

    [21]

    Sato D, Xie L H, Nguyen T P, Weiss J N, Qu Z 2010 Biophys. J. 99 765

    [22]

    Vandersickel N, Kazbanov I V, Nuitermans A, Weise L D, Pandit R, Panfilov A V 2014 PLoS One 9 e84595

    [23]

    Liu M B, de Lange E, Garfinkel A, Weiss J N, Qu Z 2015 Heart Rhythm 12 2115

    [24]

    Martens E A, Laing C R, Strogatz S H 2010 Phys. Rev. Lett. 104 044101

    [25]

    Walker R G, Koster R W, Sun C, Moffat G, Barger J, Dodson P P, Chapman F W 2009 Resuscitation 80 773

  • [1]

    Gray R A, Jalife J, Panfilov A, Baxter W T, Cabo C, Davidenko J M, Pertsov A M 1995 Circulation 91 2454

    [2]

    Fenton F H, Cherry E M, Hastings H M, Evans S J 2002 Chaos 12 852

    [3]

    Ouyan Q 2001 Physics 30 30 (in Chinese) [欧阳颀 2001 物理 30 30]

    [4]

    Keldermann R H, Ten Tusscher K H W J, Nash M P, Bradley C P, Hren R, Taggart P, Panfilov A V 2009 Am. J. Physiol. Heart Circ. Physiol. 296 H370

    [5]

    Qu Z, Xie F, Garfinkel A, Weiss J N 2000 Ann. Biomed. Eng. 28 755

    [6]

    Courtemanche M 1996 Chaos 6 579

    [7]

    Shajahan T K, Nayak A R, Pandit R 2009 PLoS One 4 e4738

    [8]

    Kazbanov I V, Clayton R H, Nash M P, Bradley C P, Paterson D J, Hayward M P, Taggart P, Panfilov A V 2014 PLoS Comput. Biol. 10 e1003891

    [9]

    Priebe L, Beuckelmann D J 1998 Circ. Res. 82 1206

    [10]

    Ten Tusscher K H W J, Noble D, Noble P J, Panfilov A V 2004 Am. J. Physiol. Heart Circ. Physiol. 286 H1573

    [11]

    Iyer V, Mazhari R, Winslow R L 2004 Biophys. J. 87 1507

    [12]

    Grandi E, Pasqualini F S, Bers D M 2010 J. Mol. Cell Cardiol. 48 112

    [13]

    O'Hara T, Virg L, Varr A, Rudy Y 2011 PLoS Comput. Biol. 7 e1002061

    [14]

    Ten Tusscher K H W J, Hren R, Panfilov A V 2007 Circ. Res. 100 e87

    [15]

    Zimik S, Vandersickel N, Nayak A R, Panfilov A V, Pandit R 2015 PLoS One 10 e0130632

    [16]

    de Ferrari G M, Viola M, D'Amato E, Antolini R, Forti S 1995 Circulation 91 2510

    [17]

    Xie L H, Chen F, Karagueuzian H S, Weiss J N 2009 Circ. Res. 104 79

    [18]

    Karagueuzian H S, Nguyen T P, Qu Z, Weiss J N 2013 Front. Physiol. 4 1

    [19]

    Schillinger K J, Patel V V 2012 J. Geriatr. Cardiol. 9 379

    [20]

    Zhao Z, Wen H, Fefelova N, Allen C, Baba A, Matsuda T, Xie L H 2012 Am. J. Physiol. Heart Circ. Physiol. 302 H1636

    [21]

    Sato D, Xie L H, Nguyen T P, Weiss J N, Qu Z 2010 Biophys. J. 99 765

    [22]

    Vandersickel N, Kazbanov I V, Nuitermans A, Weise L D, Pandit R, Panfilov A V 2014 PLoS One 9 e84595

    [23]

    Liu M B, de Lange E, Garfinkel A, Weiss J N, Qu Z 2015 Heart Rhythm 12 2115

    [24]

    Martens E A, Laing C R, Strogatz S H 2010 Phys. Rev. Lett. 104 044101

    [25]

    Walker R G, Koster R W, Sun C, Moffat G, Barger J, Dodson P P, Chapman F W 2009 Resuscitation 80 773

  • [1] 潘军廷, 何银杰, 夏远勋, 张宏. 极化电场对可激发介质中螺旋波的控制. 物理学报, 2020, 69(8): 080503. doi: 10.7498/aps.69.20191934
    [2] 李倩昀, 黄志精, 唐国宁. 通过抑制波头旋转消除心脏中的螺旋波和时空混沌. 物理学报, 2018, 67(24): 248201. doi: 10.7498/aps.67.20181291
    [3] 韦宾, 唐国宁, 邓敏艺. 具有早期后除极化现象的可激发系统中螺旋波破碎方式研究. 物理学报, 2018, 67(9): 090501. doi: 10.7498/aps.67.20172505
    [4] 徐莹, 王春妮, 靳伍银, 马军. 梯度耦合下神经元网络中靶波和螺旋波的诱发研究. 物理学报, 2015, 64(19): 198701. doi: 10.7498/aps.64.198701
    [5] 李伟恒, 黎维新, 潘飞, 唐国宁. 两层耦合可激发介质中螺旋波转变为平面波. 物理学报, 2014, 63(20): 208201. doi: 10.7498/aps.63.208201
    [6] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究. 物理学报, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [7] 陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁. 间接延迟耦合可激发介质中螺旋波的演化. 物理学报, 2013, 62(12): 128201. doi: 10.7498/aps.62.128201
    [8] 赵龙, 杨继平, 郑艳红. 神经元网络螺旋波诱发机理研究. 物理学报, 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [9] 周振玮, 王利利, 乔成功, 陈醒基, 田涛涛, 唐国宁. 用同步复极化终止心脏中的螺旋波和时空混沌. 物理学报, 2013, 62(15): 150508. doi: 10.7498/aps.62.150508
    [10] 李玉叶, 贾冰, 古华光. 白噪声诱发Morris-Lecar模型构成的Ⅱ型兴奋网络产生多次空间相干共振. 物理学报, 2012, 61(7): 070504. doi: 10.7498/aps.61.070504
    [11] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究. 物理学报, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [12] 陈醒基, 田涛涛, 周振玮, 胡一博, 唐国宁. 通过被动介质耦合的两螺旋波的同步. 物理学报, 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [13] 邝玉兰, 唐国宁. 利用短期心脏记忆消除螺旋波和时空混沌. 物理学报, 2012, 61(19): 190501. doi: 10.7498/aps.61.190501
    [14] 董丽芳, 白占国, 贺亚峰. 非均匀可激发介质中的稀密螺旋波. 物理学报, 2012, 61(12): 120509. doi: 10.7498/aps.61.120509
    [15] 邝玉兰, 唐国宁. 心脏中的螺旋波和时空混沌的抑制研究. 物理学报, 2012, 61(10): 100504. doi: 10.7498/aps.61.100504
    [16] 韦海明, 唐国宁. 交替行为对螺旋波影响的数值模拟研究. 物理学报, 2011, 60(4): 040504. doi: 10.7498/aps.60.040504
    [17] 田昌海, 邓敏艺, 孔令江, 刘慕仁. 螺旋波动力学性质的元胞自动机有向小世界网络研究. 物理学报, 2011, 60(8): 080505. doi: 10.7498/aps.60.080505
    [18] 韦海明, 唐国宁. 离散可激发介质中早期后去极化对螺旋波影响的数值研究. 物理学报, 2011, 60(3): 030501. doi: 10.7498/aps.60.030501
    [19] 甘正宁, 马 军, 张国勇, 陈 勇. 小世界网络上螺旋波失稳的研究. 物理学报, 2008, 57(9): 5400-5406. doi: 10.7498/aps.57.5400
    [20] 马 军, 靳伍银, 李延龙, 陈 勇. 随机相位扰动抑制激发介质中漂移的螺旋波. 物理学报, 2007, 56(4): 2456-2465. doi: 10.7498/aps.56.2456
计量
  • 文章访问数:  5475
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-10
  • 修回日期:  2016-11-27
  • 刊出日期:  2017-03-05

/

返回文章
返回