搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂微通道内非混相驱替过程的格子Boltzmann方法

臧晨强 娄钦

引用本文:
Citation:

复杂微通道内非混相驱替过程的格子Boltzmann方法

臧晨强, 娄钦

Lattice Boltzmann simulation of immiscible displacement in the complex micro-channel

Zang Chen-Qiang, Lou Qin
PDF
导出引用
  • 本文采用改进的基于伪势模型的格子Boltzmann方法研究复杂微通道内的非混相驱替问题.这种方法克服了原始伪势模型中计算结果对网格步长的依赖.首先用Laplace定律验证模型的正确性,然后用该方法研究壁面润湿性、粗糙结构、黏性比以及距离对非混相驱替过程的影响.模拟结果表明:与壁面粗糙结构和黏性比相比,壁面润湿性的影响是决定性的因素.随着接触角的增加,驱替效率增加,当接触角大于某一值后,驱替效率不再变化;随着黏性比的增加,驱替效率增加;而壁面粗糙性对驱替过程的影响较复杂,只有凸起半圆的半径在一定范围内增加时,驱替效率增加;距离较小时将促进驱替过程.
    The immiscible displacement process in micro-channel, which widely existes in daily life and industrial production, is an important research subject. This subject is a typical contact line problem involving complicated fluid-fluid interactions and fluid-solid interactions which have attracted the interest of many scholars. Although the immiscible displacement in micro-channels has been studied by some researches, the problem is still not fully understood because the mechanism of the immiscible displacement is very complex. In order to further explain the physical mechanism of immiscible displacement process in micro-channels, detailed numerical simulations are carried out in a complex micro-channel containing a semicircular cavity and a semicircular by bulge using an improved pseudo-potential lattice Boltzmann method (LBM). This model overcomes the drawback of the dependence of the fluid properties on the grid size, which exists in the original pseudo-potential LBM. Initially, the cavity is filled with the liquid and the rest of the area is filled with its vapour. The semicircular bulge represents the roughness of the micro-channel. The approach is first validated by the Laplace law. The results show that the numerical results are in good agreement with the theoretical predictions. Then the model is employed to study the immiscible displacement process in the micro-channel. The effects of the surface wettability, the surface roughness, the viscosity ratio between the liquid phase and the gas phase, and the distance between the semicircular cavity and the semicircular bulge are studied. The simulation results show that the influence of the surface wettability on the displacement process is a decisive factor compared with other factors. With the increase of the contact angle, the displacement efficiency increases and the displacement time decreases. When the contact〉is larger than a certain value, all of the liquid can be displaced from the cavity. At that time, the displacement efficiency is equal to 1. The above results are consistent with the theoretical prediction that with the increase of the contact angle, the liquid is easily driven out of the cavity because the adhesion force of the liquid in the cavity decreases. On the other hand, the influence of the surface roughness on the displacement process is more complex. The displacement efficiency increases with the radius of the semicircle bulge increasing in a certain range. When the radius is larger than a certain value, the liquid cannot be ejected from the cavity due to the velocity around the cavity is too small. Furthermore, the liquid cannot be displaced from the cavity at a small viscosity ratio. As the viscosity ratio increases, the displacement efficiency increases and the displacement time decreases. As for the distance between the semicircular bulge and the semicircular cavity, it promotes the displacement process at an early stage. When the distance exceeds a certain value, it has little effect on the displacement process.
      通信作者: 娄钦, louqin560916@163.com
    • 基金项目: 国家自然科学基金(批准号:51406120)资助的课题.
      Corresponding author: Lou Qin, louqin560916@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.51406120).
    [1]

    Tecklenburg J, Neuweiler I, Dentz M, Carrera J, Geiger S, Abramowski C, Silva O 2013 Adv. Water Res. 62 475

    [2]

    Zhu X, Sui P C, Djilali N 2008 J. Power Sources 181 101

    [3]

    Yang D, Krasowska M, Priest C, Ralston J 2014 Phys. Chem. Chem. Phys. 16 24473

    [4]

    Islam S F, Sundara R V, Whitehouse S, Althaus T O, Palzer S, Hounslow M J, Salman A D 2016 Chem. Eng. Res. Des. 110 160

    [5]

    Li W Z, Sun H M, Dong B 2013 Chin. J. Computat. Mech. 1 106 (in Chinese)[李维仲, 孙红梅, 董波 2013 计算力学学报 1 106]

    [6]

    Primkulov B K, Lin F, Xu Z 2016 Colloids Surf. A:Physicochem. Eng. Aspects 497 336

    [7]

    Koplik J, Banavar J R, Willemsen J F 1988 Phys. Rev. Lett. 60 1282

    [8]

    Zhou G, Chen Z, Ge W, Li J 2010 Chem. Eng. Sci. 65 3363

    [9]

    Jamaloei B Y, Kharrat R 2010 Transp. Porous Med. 81 1

    [10]

    Pramanik S, Mishra M 2016 Phys. Rev. E 94 043106

    [11]

    Yang K, Guo Z 2016 Comput. Fluids 124 157

    [12]

    Kang Q, Zhang D, Chen S 2002 Phys. Fluids 14 3203

    [13]

    Kang Q, Zhang D, Chen S 2005 J. Fluid Mech. 545 41

    [14]

    Kang Q, Zhang D, Chen S 2004 Adv. Water Res. 27 13

    [15]

    Huang H, Huang J J, Lu X Y 2014 Comput. Fluids 93 164

    [16]

    Dong B, Yan Y Y, Li W, Song Y 2010 Comput. Fluids 39 768

    [17]

    Dong B, Yan Y Y, Li W Z 2011 Transp. Porous. Med. 88 293

    [18]

    Li W Z, Dong B, Song Y C 2012 J. Dalian Univ. Technol. 3 343 (in Chinese)[李维仲, 董波, 宋永臣 2012 大连理工大学学报 3 343]

    [19]

    Li J, Song Y C, Li W Z 2009 J. Thermal Sci. Technol. 4 284 (in Chinese)[李娟, 宋永臣, 李维仲 2009 热科学与技术 4 284]

    [20]

    Peng B L, Xu W, Wen R F, Lan Z, Bai T, Ma X H 2015 J. Eng. Thermophys. 4 820 (in Chinese)[彭本利, 徐威, 温荣福, 兰忠, 白涛, 马学虎 2015 工程热物理学报 4 820]

    [21]

    Liang H, Chai Z, Shi B, Guo Z, Li Q 2015 Int. J. Mod. Phys. C 26 1550074

    [22]

    Gunstensen A K, Rothman D H, Zaleski S, Zanetti G 1991 Phys. Rev. A 43 4320

    [23]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [24]

    Shan X, Chen H 1994 Phys. Rev. E 49 2941

    [25]

    Swift M R, Osborn W R, Yeomans J M 1995 Phys. Rev. Lett. 75 830

    [26]

    Swift M R, Orlandini E, Osborn W R, Yeomans J M 1996 Phys. Rev. E 54 5041

    [27]

    Luo L S 1998 Phys. Rev. Lett. 81 1618

    [28]

    He X, Chen S, Zhang R 1999 J. Comput. Phys. 152 642

    [29]

    Guo Z, Zhao T S 2005 Phys. Rev. E 71 026701

    [30]

    Yu Z, Fan L S 2009 J. Comput. Phys. 228 6456

    [31]

    Guo Z, Zheng C, Shi B 2002 Phys. Rev. E 65 046308

    [32]

    Martys N S, Chen H 1996 Phys. Rev. E 53 743

    [33]

    Zhang R, He X, Chen S 2000 Comput. Phys. Commun. 129 121

    [34]

    Fakhari A, Rahimian M H 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 3046

    [35]

    Zheng H W, Shu C, Chew Y T 2006 J. Comput. Phys. 218 353

    [36]

    Hao L, Cheng P 2000 J. Power Sources 190 435

    [37]

    Huang H, Lu X 2009 Phys. Fluids 21 092104

    [38]

    Li Q, Luo K H, Kang Q J, Chen Q 2014 Phys. Rev. E 90 053301

  • [1]

    Tecklenburg J, Neuweiler I, Dentz M, Carrera J, Geiger S, Abramowski C, Silva O 2013 Adv. Water Res. 62 475

    [2]

    Zhu X, Sui P C, Djilali N 2008 J. Power Sources 181 101

    [3]

    Yang D, Krasowska M, Priest C, Ralston J 2014 Phys. Chem. Chem. Phys. 16 24473

    [4]

    Islam S F, Sundara R V, Whitehouse S, Althaus T O, Palzer S, Hounslow M J, Salman A D 2016 Chem. Eng. Res. Des. 110 160

    [5]

    Li W Z, Sun H M, Dong B 2013 Chin. J. Computat. Mech. 1 106 (in Chinese)[李维仲, 孙红梅, 董波 2013 计算力学学报 1 106]

    [6]

    Primkulov B K, Lin F, Xu Z 2016 Colloids Surf. A:Physicochem. Eng. Aspects 497 336

    [7]

    Koplik J, Banavar J R, Willemsen J F 1988 Phys. Rev. Lett. 60 1282

    [8]

    Zhou G, Chen Z, Ge W, Li J 2010 Chem. Eng. Sci. 65 3363

    [9]

    Jamaloei B Y, Kharrat R 2010 Transp. Porous Med. 81 1

    [10]

    Pramanik S, Mishra M 2016 Phys. Rev. E 94 043106

    [11]

    Yang K, Guo Z 2016 Comput. Fluids 124 157

    [12]

    Kang Q, Zhang D, Chen S 2002 Phys. Fluids 14 3203

    [13]

    Kang Q, Zhang D, Chen S 2005 J. Fluid Mech. 545 41

    [14]

    Kang Q, Zhang D, Chen S 2004 Adv. Water Res. 27 13

    [15]

    Huang H, Huang J J, Lu X Y 2014 Comput. Fluids 93 164

    [16]

    Dong B, Yan Y Y, Li W, Song Y 2010 Comput. Fluids 39 768

    [17]

    Dong B, Yan Y Y, Li W Z 2011 Transp. Porous. Med. 88 293

    [18]

    Li W Z, Dong B, Song Y C 2012 J. Dalian Univ. Technol. 3 343 (in Chinese)[李维仲, 董波, 宋永臣 2012 大连理工大学学报 3 343]

    [19]

    Li J, Song Y C, Li W Z 2009 J. Thermal Sci. Technol. 4 284 (in Chinese)[李娟, 宋永臣, 李维仲 2009 热科学与技术 4 284]

    [20]

    Peng B L, Xu W, Wen R F, Lan Z, Bai T, Ma X H 2015 J. Eng. Thermophys. 4 820 (in Chinese)[彭本利, 徐威, 温荣福, 兰忠, 白涛, 马学虎 2015 工程热物理学报 4 820]

    [21]

    Liang H, Chai Z, Shi B, Guo Z, Li Q 2015 Int. J. Mod. Phys. C 26 1550074

    [22]

    Gunstensen A K, Rothman D H, Zaleski S, Zanetti G 1991 Phys. Rev. A 43 4320

    [23]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [24]

    Shan X, Chen H 1994 Phys. Rev. E 49 2941

    [25]

    Swift M R, Osborn W R, Yeomans J M 1995 Phys. Rev. Lett. 75 830

    [26]

    Swift M R, Orlandini E, Osborn W R, Yeomans J M 1996 Phys. Rev. E 54 5041

    [27]

    Luo L S 1998 Phys. Rev. Lett. 81 1618

    [28]

    He X, Chen S, Zhang R 1999 J. Comput. Phys. 152 642

    [29]

    Guo Z, Zhao T S 2005 Phys. Rev. E 71 026701

    [30]

    Yu Z, Fan L S 2009 J. Comput. Phys. 228 6456

    [31]

    Guo Z, Zheng C, Shi B 2002 Phys. Rev. E 65 046308

    [32]

    Martys N S, Chen H 1996 Phys. Rev. E 53 743

    [33]

    Zhang R, He X, Chen S 2000 Comput. Phys. Commun. 129 121

    [34]

    Fakhari A, Rahimian M H 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 3046

    [35]

    Zheng H W, Shu C, Chew Y T 2006 J. Comput. Phys. 218 353

    [36]

    Hao L, Cheng P 2000 J. Power Sources 190 435

    [37]

    Huang H, Lu X 2009 Phys. Fluids 21 092104

    [38]

    Li Q, Luo K H, Kang Q J, Chen Q 2014 Phys. Rev. E 90 053301

  • [1] 赖瑶瑶, 陈鑫梦, 柴振华, 施保昌. 基于格子Boltzmann方法的钉扎螺旋波反馈控制. 物理学报, 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] 刘高洁, 邵子宇, 娄钦. 多孔介质中含溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2022, 71(5): 054702. doi: 10.7498/aps.71.20211851
    [3] 张恒, 任峰, 胡海豹. 基于格子Boltzmann方法的幂律流体二维顶盖驱动流转捩研究. 物理学报, 2021, 70(18): 184703. doi: 10.7498/aps.70.20210451
    [4] 刘高洁, 邵子宇, 娄钦. 多孔介质中含有溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211851
    [5] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力. 物理学报, 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [6] 王佐, 张家忠, 王恒. 非正交多松弛系数轴对称热格子Boltzmann方法. 物理学报, 2017, 66(4): 044701. doi: 10.7498/aps.66.044701
    [7] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [8] 刘邱祖, 寇子明, 贾月梅, 吴娟, 韩振南, 张倩倩. 改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟. 物理学报, 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
    [9] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [10] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟. 物理学报, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [11] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究. 物理学报, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [12] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [13] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [14] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流. 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [15] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [16] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟. 物理学报, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [17] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用. 物理学报, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [18] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [19] 吕晓阳, 李华兵. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流. 物理学报, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
    [20] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程. 物理学报, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
计量
  • 文章访问数:  4914
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-10
  • 修回日期:  2017-05-04
  • 刊出日期:  2017-07-05

/

返回文章
返回