搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卢卡斯光子筛的聚焦特性研究

谢静 张军勇 岳阳 张艳丽

引用本文:
Citation:

卢卡斯光子筛的聚焦特性研究

谢静, 张军勇, 岳阳, 张艳丽

Focusing properties of Lucas sieves

Xie Jing, Zhang Jun-Yong, Yue Yang, Zhang Yan-Li
PDF
导出引用
  • 介绍了一种基于卢卡斯数编码设计的轴上四焦点光子筛,其各焦距分布与黄金分割比密切相关.实验上利用相移数字全息验证了设计器件具有轴上四焦点聚焦特性,测量结果表明:轴向焦距和横向焦斑光强分布与理论设计值一致.该振幅型光子筛具有体积小、重量轻、易加工等优点,可应用于X波段显微和生物细胞阵列成像等领域.
    A kind of optical diffractive element named photon sieve, which is essentially Fresnel zone plate in which the transmissive rings are replaced with a large number of randomly distributed isolated pinholes, can be used to focus X-ray and extreme ultraviolet lithography spectrum into spots with sizes smaller than the diameter of the smallest circular pinhole. However, both the traditional photon sieves and Fibonacci sieves have no more than two axial foci. In order to break this limitation, the Lucas sequence is introduced into the design of photon sieves, and thus producing four axial foci. With respect to the previous Fibonacci sequence, Lucas sequence has the same recursion relation as well as the same eigenvalue of golden mean =(1 + 5)/2. The only difference between them is the first two initial seeds. Based on Fresnel-Kichhoff diffraction theory, the simulation results show that there exist four focal spots with approximately equal intensity along the optical axis on condition that the hole diameters are set to be 1.16 times the underlying Fresnel zone width. Then in order to verify the validity of our proposed model, a Lucas sieve of diameter 12.11 mm and referred focal length 180 mm is fabricated by photolithography and its focusing properties are precisely measured by the in-line phase-shifting digital holography. In experiment, a quarter wave plate is used to realize two-step phase-shift interferences, and obtain the quad-focal length by auto-focusing algorithm in holography. Meanwhile, the quad-focal spots can also be calculated through the diffraction propagation of reconstructed object wave. Compared with the theoretical values, the measurement results indicate that the maximum deviation of quad-focal lengths is less than 0.9%, and the relative errors of the full width at half maximum of four Airy spots are all less than 5%. The experimental results agree well with the theoretical analysis results. Owing to the advantages of small volume, little weight and easy processing, Lucas sieve has great potential in X-ray microscopy, array imaging for living biological cell and especially in the next generation of synchrotron light sources.
      通信作者: 张军勇, zhangjy829@siom.ac.cn
    • 基金项目: 中国科学院青年创新促进会(批准号:2017292)和国家自然科学基金(批准号:61775222)资助的课题.
      Corresponding author: Zhang Jun-Yong, zhangjy829@siom.ac.cn
    • Funds: Project supported by Youth Innovation Promotion Association CAS, China (Grant No. 2017292) and National Natural Science Foundation of China (Grant No. 61775222).
    [1]

    Kirz J 1974 J. Opt. Soc. Am. 64 301

    [2]

    Suzuki Y, Takeuchi A, Takano H, Takenaka H 2005 Jpn. J. Appl. Phys. 44 1994

    [3]

    Kyuragi H, Urisu T 1985 Appl. Opt. 24 1139

    [4]

    Sun J A, Cai A 1991 J. Opt. Soc. Am. A 8 33

    [5]

    Kipp L, Skibowski M, Johnson R L, Berndt R, Adelung R, Harm S, Seemann R 2001 Nature 414 184

    [6]

    Xie C Q, Zhu X L, Shi L N, Liu M 2010 Opt. Lett. 35 1765

    [7]

    Chung H H, Bradman N M 2008 Opt. Engng. 47 118001

    [8]

    Jia J, Xie C Q 2009 Chin. Phys. B 18 183

    [9]

    Gimenez F, Monsoriu J A, Furlan W D, Pons A 2006 Opt. Express 14 11958

    [10]

    Gimenez F, Furlan W D, Monsoriu J A 2007 Opt. Commun. 277 1

    [11]

    Kallane M, Buck J, Harm S, Seemann R, Rossnagel K, Kipp L 2011 Opt. Lett. 36 2405

    [12]

    Xie C Q, Zhu X L, Li H L, Shi L N, Wang Y H 2010 Opt. Lett. 35 4048

    [13]

    Cheng G X, Hu C 2011 Acta Phys. Sin. 60 080703 (in Chinese)[程冠晓, 胡超 2011 物理学报 60 080703]

    [14]

    Cheng G X, Xing T W, Lin W M, Zhou J M, Qiu C K, Liao Z J, Yang Y, Hong L, Ma J L 2007 Proc. SPIE 6517 651736

    [15]

    Cheng Y G, Tong J M, Zhu J P, Liu J B, Hu S, He Y 2016 Opt. Lasers Eng. 77 18

    [16]

    Kincade K 2004 Laser Focus World 40 34

    [17]

    Andersen G, Asmolova O, McHarq M G, Quiller T, Maldonado C 2016 Proc. SPIE 9904 99041P

    [18]

    Zhang J Y 2015 Opt. Express 23 30308

    [19]

    Ke J, Zhang J Y 2015 Acta Opt. Sin. 35 0923001 (in Chinese)[柯杰, 张军勇 2015 光学学报 35 0923001]

    [20]

    Ke J, Zhang J Y 2015 Appl. Opt. 54 7278

    [21]

    Ke J, Zhang J Y 2016 Opt. Commum. 368 34

    [22]

    Takaki Y, Kawai H, Ohzu H 1999 Appl. Opt. 38 4990

  • [1]

    Kirz J 1974 J. Opt. Soc. Am. 64 301

    [2]

    Suzuki Y, Takeuchi A, Takano H, Takenaka H 2005 Jpn. J. Appl. Phys. 44 1994

    [3]

    Kyuragi H, Urisu T 1985 Appl. Opt. 24 1139

    [4]

    Sun J A, Cai A 1991 J. Opt. Soc. Am. A 8 33

    [5]

    Kipp L, Skibowski M, Johnson R L, Berndt R, Adelung R, Harm S, Seemann R 2001 Nature 414 184

    [6]

    Xie C Q, Zhu X L, Shi L N, Liu M 2010 Opt. Lett. 35 1765

    [7]

    Chung H H, Bradman N M 2008 Opt. Engng. 47 118001

    [8]

    Jia J, Xie C Q 2009 Chin. Phys. B 18 183

    [9]

    Gimenez F, Monsoriu J A, Furlan W D, Pons A 2006 Opt. Express 14 11958

    [10]

    Gimenez F, Furlan W D, Monsoriu J A 2007 Opt. Commun. 277 1

    [11]

    Kallane M, Buck J, Harm S, Seemann R, Rossnagel K, Kipp L 2011 Opt. Lett. 36 2405

    [12]

    Xie C Q, Zhu X L, Li H L, Shi L N, Wang Y H 2010 Opt. Lett. 35 4048

    [13]

    Cheng G X, Hu C 2011 Acta Phys. Sin. 60 080703 (in Chinese)[程冠晓, 胡超 2011 物理学报 60 080703]

    [14]

    Cheng G X, Xing T W, Lin W M, Zhou J M, Qiu C K, Liao Z J, Yang Y, Hong L, Ma J L 2007 Proc. SPIE 6517 651736

    [15]

    Cheng Y G, Tong J M, Zhu J P, Liu J B, Hu S, He Y 2016 Opt. Lasers Eng. 77 18

    [16]

    Kincade K 2004 Laser Focus World 40 34

    [17]

    Andersen G, Asmolova O, McHarq M G, Quiller T, Maldonado C 2016 Proc. SPIE 9904 99041P

    [18]

    Zhang J Y 2015 Opt. Express 23 30308

    [19]

    Ke J, Zhang J Y 2015 Acta Opt. Sin. 35 0923001 (in Chinese)[柯杰, 张军勇 2015 光学学报 35 0923001]

    [20]

    Ke J, Zhang J Y 2015 Appl. Opt. 54 7278

    [21]

    Ke J, Zhang J Y 2016 Opt. Commum. 368 34

    [22]

    Takaki Y, Kawai H, Ohzu H 1999 Appl. Opt. 38 4990

  • [1] 徐平, 徐海东, 杨拓, 黄海漩, 张旭琳, 袁霞, 肖钰斐, 李雄超, 王梦禹. 三层衍射神经网络实现手写数字识别. 物理学报, 2022, 71(18): 184207. doi: 10.7498/aps.71.20220536
    [2] 钟志, 赵婉婷, 单明广, 刘磊. 远心同-离轴混合数字全息高分辨率重建方法. 物理学报, 2021, 70(15): 154202. doi: 10.7498/aps.70.20210190
    [3] 张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才. 基于数字全息的血红细胞显微成像技术. 物理学报, 2020, 69(16): 164201. doi: 10.7498/aps.69.20200357
    [4] 王雪光, 李明, 于娜娜, 席思星, 王晓雷, 郎利影. 基于空间角度复用和双随机相位的多图像光学加密方法. 物理学报, 2019, 68(24): 240503. doi: 10.7498/aps.68.20191362
    [5] 周宏强, 万玉红, 满天龙. 基于位相变更的非相干数字全息自适应成像. 物理学报, 2018, 67(4): 044202. doi: 10.7498/aps.67.20172202
    [6] 谷婷婷, 黄素娟, 闫成, 缪庄, 常征, 王廷云. 基于数字全息图的光纤折射率测量研究. 物理学报, 2015, 64(6): 064204. doi: 10.7498/aps.64.064204
    [7] 戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔. 第三代同步辐射光源X射线相干性测量研究. 物理学报, 2014, 63(10): 104202. doi: 10.7498/aps.63.104202
    [8] 王林, 袁操今, 聂守平, 李重光, 张慧力, 赵应春, 张秀英, 冯少彤. 数字全息术测定涡旋光束拓扑电荷数. 物理学报, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [9] 王大勇, 王云新, 郭莎, 戎路, 张亦卓. 基于多角度无透镜傅里叶变换数字全息的散斑噪声抑制成像研究. 物理学报, 2014, 63(15): 154205. doi: 10.7498/aps.63.154205
    [10] 黄建衡, 杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨. 硬X射线微分相衬成像的噪声特性分析. 物理学报, 2014, 63(16): 168702. doi: 10.7498/aps.63.168702
    [11] 马骏, 袁操今, 冯少彤, 聂守平. 基于数字全息及复用技术的全场偏振态测试方法. 物理学报, 2013, 62(22): 224204. doi: 10.7498/aps.62.224204
    [12] 卢明峰, 吴坚, 郑明. 数字全息周期像的产生机理及在抑制零级衍射上的应用. 物理学报, 2013, 62(9): 094207. doi: 10.7498/aps.62.094207
    [13] 于斌, 李恒, 陈丹妮, 牛憨笨. 用于大景深三维纳米分辨多分子追踪的衍射光学元件的设计制备和实验研究. 物理学报, 2013, 62(15): 154206. doi: 10.7498/aps.62.154206
    [14] 李俊昌. 数字全息重建图像的焦深研究. 物理学报, 2012, 61(13): 134203. doi: 10.7498/aps.61.134203
    [15] 陈萍, 唐志列, 王娟, 付晓娣, 陈飞虎. 用Stokes参量法实现数字同轴偏振全息的研究. 物理学报, 2012, 61(10): 104202. doi: 10.7498/aps.61.104202
    [16] 徐先锋, 韩立立, 袁红光. 两步相移数字全息物光重建误差分析与校正. 物理学报, 2011, 60(8): 084206. doi: 10.7498/aps.60.084206
    [17] 崔华坤, 王大勇, 王云新, 刘长庚, 赵洁, 李艳. 无透镜傅里叶变换数字全息术中非共面误差的自动补偿算法. 物理学报, 2011, 60(4): 044201. doi: 10.7498/aps.60.044201
    [18] 乐孜纯, 董文, 刘魏, 张明, 梁静秋, 全必胜, 刘恺, 梁中翥, 朱佩平, 伊福廷, 黄万霞. 抛物面型X射线组合折射透镜聚焦性能的理论与实验研究. 物理学报, 2010, 59(3): 1977-1984. doi: 10.7498/aps.59.1977
    [19] 胡昕, 张继彦, 杨国洪, 刘慎业, 丁永坤. 基于布拉格反射镜的X射线多色单能成像谱仪. 物理学报, 2009, 58(9): 6397-6402. doi: 10.7498/aps.58.6397
    [20] 陆璇辉, 黄凯凯. 衍射光学元件改善激光谐振腔输出特性的研究. 物理学报, 2001, 50(8): 1409-1414. doi: 10.7498/aps.50.1409
计量
  • 文章访问数:  6703
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-19
  • 修回日期:  2018-03-09
  • 刊出日期:  2019-05-20

/

返回文章
返回