搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑介质膨胀速率的锂离子电池管状电极中扩散诱导应力及轴向支反力分析

彭颖吒 李泳 郑百林 张锴 徐咏川

引用本文:
Citation:

考虑介质膨胀速率的锂离子电池管状电极中扩散诱导应力及轴向支反力分析

彭颖吒, 李泳, 郑百林, 张锴, 徐咏川

Influence of local velocity on diffusion-induced stress and axial reaction force in a hollow cylindrical electrode of lithium-ion batteries with cosidering expasion rate of medium

Peng Ying-Zha, Li Yong, Zheng Bai-Lin, Zhang Kai, Xu Yong-Chuan
PDF
导出引用
  • 硅作为锂离子电池阴极材料相对于传统负极材料具有高比容量,价格低廉等优势.本文针对充电过程中锂离子电池中电极建立力学模型和扩散模型,并在扩散模型引入考虑介质膨胀速率的影响.以硅空心柱形电极为例,分析了恒流充电下介质膨胀速率对电极中扩散诱导应力分布的影响,并研究了不同内外半径比、充电速率、材料参数以及锂化诱导软化系数(lithiation induced softening factor,LISF)对轴向的支反力达到临界欧拉屈曲力所需时间的影响.结果表明,随着电极中锂浓度上升,介质膨胀速率对应力分布的影响增大,对轴向的支反力影响较小.弹性模量和应力成正比,但其与轴向的支反力达到临界欧拉屈曲力所需时间无关;扩散系数与所需时间成反比;偏摩尔体积增大时,达到临界屈曲力所需时间减少;随着LISF绝对值增大,完全锂化时轴向力降低.
    Silicon, as the next-generation cathode material in lithium-ion batteries, exhibits excellent electrochemical performances compared with traditional cathode material, such as high capacity and cheap price. However, its cycling performances are greatly affected by the volume change of silicon due to the insertion of Li atoms. Lots of work focuses on the analysis of diffusion-induced stresses in electrode, but the convection term is seldom considered in analyzing the diffusion-induced stress in an electrode. In this paper, a mathematical model is established, where the convection term is taken into consideration in the diffusion process. The mechanics equations and diffusion equation are derived based on continuum mechanics and the diffusion theory. Diffusion-induced stress, axial reaction force and the critical buckling time in a hollow cylindrical electrode under galvanostatic charging are calculated. The effects of local velocity, ratio of the outer radius to inner radius, charging rate, material parameters and lithiation induced softening factors on stress field and the critical buckling time are studied. According to the results, it is found that the influence of local velocity on stress distribution increases with the increasing of Li concentration, and the contribution of local velocity to axial reaction force is insignificant. Compared with the results without local velocity, the tensile hoop stress of inner surface is large, and compressive stress at the outer surface is small. The axial reaction force and the critical buckling time are calculated with different ratios of outer radius to inner radius. As the radius ratio increases, the axial reaction force and critical buckling time decrease. The effects of three main material parameters (elastic modulus, diffusion coefficient, partial molar volume) on axial reaction force are discussed. The dimensionless force is independent of elastic modulus due to stress varying linearly with Young's modulus. The critical time is inversely proportional to diffusion coefficient. As the partial molar volume increases, which indicates larger volume change induced by the intercalation of the same quantity of Li-ions, the critical buckling time drops and the effect of local velocity on stress field increases. It takes less time for axial reaction force to reach the critical buckling force at a higher charging rate. The elastic properties of silicon in the lithiation process should be a function of Li concentration due to the formation of Li-Si alloy. The elastic modulus is assumed to be a linear function of Li concentration. The hollow cylindrical electrodes with increasing absolute value of lithiation induced softening factor have lower maximum axial reaction force. However, the lithiation induced softening factor has a limited effect on the critical buckling time due to the fact that the Li concentration at critical buckling time is relatively small.
      Corresponding author: Zheng Bai-Lin, blzheng@tongji.edu.cn;zhangkai@ust.hk ; Zhang Kai, blzheng@tongji.edu.cn;zhangkai@ust.hk
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11672210).
    [1]

    Lockwood D J 1999 Nanostructure Science and Technology (New York: Springer) pp1-20

    [2]

    Guo B K, Li X H, Yang S Q 2009 Chemical Power Source-Principle and Manufacturing Technology of Battery (Hunan: Central South University Press) p315 (in Chinese) [郭炳焜, 李新海, 杨松青 2009 化学电源电池原理及制造技术 (湖南: 中南大学出版社) 第315页]

    [3]

    Aifantis K E, Hackney S A, Kumar R V 2010 High Energy Density Lithium Batteries: Material, Engineering, Application (Hoboken: Wiley-VCH) p129

    [4]

    Besenhard J O, Yang J, Winter M 1997 J. Power Sources 68 87

    [5]

    Liu R, Duay J, Lee S B 2011 Chem. Commun. 47 1384

    [6]

    McDowell M T, Lee S W, Nix W D, Cui Y 2013 Adv. Mater. 25 4966

    [7]

    Shenoy V B, Johari P, Qi Y 2010 J. Power Sources 195 6825

    [8]

    Yang F Q 2010 J. Appl. Phys. 108 073536

    [9]

    Sun Y, Liu N, Cui Y 2016 Nat. Energy 1 1

    [10]

    Park M H, Kim M G, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J 2009 Nano Lett. 9 3844

    [11]

    Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell1 T T, Lee S W, Jackson A, Yang Y, Hu L B, Cui Y 2012 Nature Nanotech. 7 310

    [12]

    Prussin S 1961 J. Appl. Phys. 32 1876

    [13]

    Li J C, Dozier A K, Li Y, Yang F, Cheng Y T 2011 J. Electrochem. Soc. 158 A689

    [14]

    Christensen J, Newman J 2005 J. Solid State Electrochem. 10 293

    [15]

    Feng H, Fang D 2013 J. Appl. Phys. 113 013507

    [16]

    Peng Y Z, Zhang K, Zheng B L, Li Y 2016 Acta Phys. Sin. 65 100201 (in Chinese) [彭颖吒, 张锴, 郑百林, 李泳 2016 物理学报 65 100201]

    [17]

    Zhang K, Li Y, Zheng B L 2015 J. Appl. Phys. 118 105102

    [18]

    Li Y, Zhang K, Zheng B L, Yang F 2016 J. Phys. D: Appl. Phys. 49 285602

    [19]

    Li Y, Zhang K, Zheng B L, Yang F 2016 J. Power Sources 319 168

    [20]

    Gere J, Goodno B 2012 Mechanics of Materials (Toronto: Nelson Education) p902

    [21]

    Pal S, Damle S S, Patel S H, Datta M K, Kumta P N, Maiti S 2014 J. Power Sources 246 149

    [22]

    Zhao K J, Pharr M, Cai S Q, Vlassak J J, Suo Z G 2011 J. Am. Ceram. Soc. 94 S226

    [23]

    Deshpande R, Qi Y, Cheng Y T 2010 J. Electron. Mater. 157 A967

  • [1]

    Lockwood D J 1999 Nanostructure Science and Technology (New York: Springer) pp1-20

    [2]

    Guo B K, Li X H, Yang S Q 2009 Chemical Power Source-Principle and Manufacturing Technology of Battery (Hunan: Central South University Press) p315 (in Chinese) [郭炳焜, 李新海, 杨松青 2009 化学电源电池原理及制造技术 (湖南: 中南大学出版社) 第315页]

    [3]

    Aifantis K E, Hackney S A, Kumar R V 2010 High Energy Density Lithium Batteries: Material, Engineering, Application (Hoboken: Wiley-VCH) p129

    [4]

    Besenhard J O, Yang J, Winter M 1997 J. Power Sources 68 87

    [5]

    Liu R, Duay J, Lee S B 2011 Chem. Commun. 47 1384

    [6]

    McDowell M T, Lee S W, Nix W D, Cui Y 2013 Adv. Mater. 25 4966

    [7]

    Shenoy V B, Johari P, Qi Y 2010 J. Power Sources 195 6825

    [8]

    Yang F Q 2010 J. Appl. Phys. 108 073536

    [9]

    Sun Y, Liu N, Cui Y 2016 Nat. Energy 1 1

    [10]

    Park M H, Kim M G, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J 2009 Nano Lett. 9 3844

    [11]

    Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell1 T T, Lee S W, Jackson A, Yang Y, Hu L B, Cui Y 2012 Nature Nanotech. 7 310

    [12]

    Prussin S 1961 J. Appl. Phys. 32 1876

    [13]

    Li J C, Dozier A K, Li Y, Yang F, Cheng Y T 2011 J. Electrochem. Soc. 158 A689

    [14]

    Christensen J, Newman J 2005 J. Solid State Electrochem. 10 293

    [15]

    Feng H, Fang D 2013 J. Appl. Phys. 113 013507

    [16]

    Peng Y Z, Zhang K, Zheng B L, Li Y 2016 Acta Phys. Sin. 65 100201 (in Chinese) [彭颖吒, 张锴, 郑百林, 李泳 2016 物理学报 65 100201]

    [17]

    Zhang K, Li Y, Zheng B L 2015 J. Appl. Phys. 118 105102

    [18]

    Li Y, Zhang K, Zheng B L, Yang F 2016 J. Phys. D: Appl. Phys. 49 285602

    [19]

    Li Y, Zhang K, Zheng B L, Yang F 2016 J. Power Sources 319 168

    [20]

    Gere J, Goodno B 2012 Mechanics of Materials (Toronto: Nelson Education) p902

    [21]

    Pal S, Damle S S, Patel S H, Datta M K, Kumta P N, Maiti S 2014 J. Power Sources 246 149

    [22]

    Zhao K J, Pharr M, Cai S Q, Vlassak J J, Suo Z G 2011 J. Am. Ceram. Soc. 94 S226

    [23]

    Deshpande R, Qi Y, Cheng Y T 2010 J. Electron. Mater. 157 A967

  • [1] 彭颖吒, 张锴, 郑百林. 恒流充电有限柱体电极浓度分布及扩散诱导应力解析分析. 物理学报, 2024, 73(15): 158201. doi: 10.7498/aps.73.20231753
    [2] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [3] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比. 物理学报, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [4] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211619
    [5] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [6] 彭劼扬, 王家海, 沈斌, 李浩亮, 孙昊明. 纳米颗粒的表面效应和电极颗粒间挤压作用对锂离子电池电压迟滞的影响. 物理学报, 2019, 68(9): 090202. doi: 10.7498/aps.68.20182302
    [7] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制. 物理学报, 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [8] 庞辉. 基于扩展单粒子模型的锂离子电池参数识别策略. 物理学报, 2018, 67(5): 058201. doi: 10.7498/aps.67.20172171
    [9] 宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会. 集流体塑性变形对锂离子电池双层电极中锂扩散和应力的影响. 物理学报, 2018, 67(14): 140201. doi: 10.7498/aps.67.20180148
    [10] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法. 物理学报, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [11] 彭颖吒, 张锴, 郑百林, 李泳. 广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析. 物理学报, 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [12] 黄亮, 李建远. 基于单粒子模型与偏微分方程的锂离子电池建模与故障监测. 物理学报, 2015, 64(10): 108202. doi: 10.7498/aps.64.108202
    [13] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性. 物理学报, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [14] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [15] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [16] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究. 物理学报, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [17] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [18] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [19] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [20] 侯柱锋, 刘慧英, 朱梓忠, 黄美纯, 杨 勇. 锂离子电池负极材料CuSn的Li嵌入性质的研究. 物理学报, 2003, 52(4): 952-957. doi: 10.7498/aps.52.952
计量
  • 文章访问数:  7635
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-23
  • 修回日期:  2018-01-09
  • 刊出日期:  2018-04-05

/

返回文章
返回