-
基于二维有限元算法使用COMSOL软件对圆形复合式磁控溅射阴极的磁场进行了计算,结合Matlab优化工具箱分别采用遗传算法和模拟退火算法对圆形复合式磁控溅射阴极的结构进行优化,得到靶材利用率达到最大的最优结构.对得到的最优化磁控阴极,基于自洽粒子模拟方法,使用VSim软件对不同工况下的放电特性进行了模拟.研究发现随着磁场非平衡度的增加,阴极表面电势降落最大的位置和等离子体聚集的位置,沿着阴极表面外沿不断向阴极中心移动,阴极表面磁场的强度不断减小.随着磁场非平衡度的增加,等离子体密度先增加后减小,鞘层厚度先减小后增加,等离子体的密度和鞘层厚度不仅与磁场非平衡度有关,而且与磁场强度有关.最后根据粒子模拟的结果,对复合式磁控阴极的靶材刻蚀深度进行了研究.研究发现,在优化前后靶材的刻蚀范围从60 mm扩展至整个靶面,极大地提高了靶材利用率.Based on the two-dimensional finite element method, the magnetic field of circular composite magnetron sputtering cathode is calculated by COMSOL software. The genetic algorithm and simulated annealing algorithm combined with Matlab optimization toolbox are used to optimize the structure of circular composite magnetron sputtering cathode, and the structural parameters with the largest utilization rate of target are obtained. For the resulting optimized magnetron cathode, based on the self-consistent particle simulation method, the discharge characteristics under different working conditions are simulated by VSim software. It is found that with the increase of non-equilibrium degree of magnetic field, the cathode surface potential drops to the maximum position and the location of the plasma aggregation, moving from the outer surface of the cathode to the center, the intensity of the magnetic field on the cathode surface decreases When the two coils have no currents flowing, the density of the plasma is largest and the thickness of the sheath is smallest In the two coils there flow reverse 5 A currents, the non-equilibrium magnetic field reaches a maximum value and the thickness of sheath is largest, the corresponding electric field strength is weak, which is not conducive to the impact ionization, so the plasma density is smallest However, in the two coils there flow positive 5 A currents, and the non-equilibrium magnetic field is smallest, the plasma density and the sheath thickness are not only related to the non-equilibrium magnetic field, but also to the magnetic field strength. Finally, according to the results of particle simulation, the target erosion depth of the magnetron cathode is studied. Combined with the sputtering yield curve, the curve of etching depth of the cathode target surface is obtained. It is found that the erosion range of the target extends from 60 mm to 76.2 mm (target radius) before and after optimization. By adjusting the magnitudes and directions of currents in the two coils, all the target surfaces can be etched, which greatly improves the target utilization.
-
Keywords:
- magnetron cathode /
- optimization design /
- non-equilibrium /
- discharge
[1] Tu H L, Zhang S R, Li T F 2016 Chin. Eng. Sci. 18 90 (in Chinese) [屠海令, 张世荣, 李腾飞 2016 中国工程科学 18 90]
[2] Window B, Savvides N 1986 J. Vac. Sci. Technol. A: Vac. Surf. Films 4 453
[3] Savvides N, Window B 1986 J. Vac. Sci. Technol. A: Vac. Surf. Films 4 504
[4] German J R 1993 IBM Tech. Discl. Bull. 36 414
[5] Ido S, Nakamura K 1993 Jpn J. Appl. Phys. 32 5698
[6] Bai H L, Mitani S, Wang Z J, Fujimori H, Motokawa M 2001 Thin Solid Films 389 51
[7] Jiang E Y, Chen Y F, Li Z Q, Bai H L 2005 J Tianjin Univ: Nat. Sci. Eng. Ed. 38 573 (in Chinese) [姜恩永, 陈逸飞, 李志青, 白海力 2005 天津大学学报 38 573]
[8] Mu Z X, Li G Q, Liu C, Jia L, Zhang C W 2003 Chin. J. Vac. Sci. Technol 23 243 (in Chinese) [牟宗信, 李国卿, 柳翠, 贾莉, 张成武 2003 真空科学与技术学报 23 243]
[9] Mu Z X, Guan B Y, Li G Q, Song L F 2002 Vacuum 3 31 (in Chinese) [牟宗信, 关秉羽, 李国卿, 宋林峰 2002 真空 3 31]
[10] Qiu Q Q 2012 CN102420091A (in Chinese) [邱清泉 2012 中国专利 CN102420091A]
[11] Wendt A E, Lieberman M A, Meuth H 1988 J. Vac. Sci. Technol. A:Vac. Surf. Films 6 1827
[12] Komath M, Rao G M, Mohan S 1999 Vacuum 52 307
[13] Sun Q, Zhang Z, Lin L, Qiu Q Q, Liu D Q, Zhang G M, Dai S T 2014 IEEE Trans. Appl. Supercon. 24 1
[14] Svadkovski I V, Golosov D A, Zavatskiy S M 2002 Vacuum 68 283
[15] Qiu Q Q, Li Q F, Su J J, Jiao Y, Jim F 2007 Chin. J. Vac. Sci. Technol. 27 493 (in Chinese) [邱清泉, 励庆孚, 苏静静, Jiao Y, Finely Jim 2007 真空科学与技术学报 27 493]
[16] Rossnagel S M, Kaufman H R 1987 J. Vac. Sci. Technol. A: Vac. Surf. Films 5 2276
[17] Rossnagel S M, Kaufman H R 1987 J. Vac. Sci. Technol. A: Vac. Surf. Films 5 88
[18] Bird G A 2003 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford: Clarendon Press)pp199–206
[19] Kolev I, Bogaerts A, Gijbels R 2005 Phys. Rev. E 72 056402
[20] Kondo S, Nanbu K 1999 J. Phys. D: Appl. Phys. 2 142
[21] Kondo S, Nanbu K 2001 J. Vac. Sci. Technol. A: Vac. Surf. Films 19 838
[22] Qiu Q Q, Li Q F, Su J J, Jiao Y, Jim F 2009 Nucl. Fusion Plasma Phys. 29 182 (in Chinese) [邱清泉, 励庆孚, 苏静静, Jiao Y, Finely Jim 2009 核聚变与等离子体物理 29 182]
[23] Shon C H, Lee J K, Lee H J, Yang Y, Chung T H 2002 IEEE Trans. Plasma Sci. 26 1635
[24] Shon C, Park J, Kang B, Lee J 1999 Jpn J. Appl. Phys. 38 4440
[25] Yu H, Wang T, Wu Z M, Jiang Y D, Jiang J, Jing H J 2009 Vacuum 46 14 (in Chinese) [于贺, 王涛, 吴志明, 蒋亚东, 姜晶, 靖红军 2009 真空 46 14]
[26] Qiu Q, Li Q, Su J, Jiao Y, Jim F 2008 Plasma Sci. Technol. 10 581
[27] Kwon U H, Choi S H, Park Y H, Lee W J 2005 Thin Solid Films 475 17
[28] Yamamura Y, Tawara H 1996 Atom Data Nucl. Data 62 149
-
[1] Tu H L, Zhang S R, Li T F 2016 Chin. Eng. Sci. 18 90 (in Chinese) [屠海令, 张世荣, 李腾飞 2016 中国工程科学 18 90]
[2] Window B, Savvides N 1986 J. Vac. Sci. Technol. A: Vac. Surf. Films 4 453
[3] Savvides N, Window B 1986 J. Vac. Sci. Technol. A: Vac. Surf. Films 4 504
[4] German J R 1993 IBM Tech. Discl. Bull. 36 414
[5] Ido S, Nakamura K 1993 Jpn J. Appl. Phys. 32 5698
[6] Bai H L, Mitani S, Wang Z J, Fujimori H, Motokawa M 2001 Thin Solid Films 389 51
[7] Jiang E Y, Chen Y F, Li Z Q, Bai H L 2005 J Tianjin Univ: Nat. Sci. Eng. Ed. 38 573 (in Chinese) [姜恩永, 陈逸飞, 李志青, 白海力 2005 天津大学学报 38 573]
[8] Mu Z X, Li G Q, Liu C, Jia L, Zhang C W 2003 Chin. J. Vac. Sci. Technol 23 243 (in Chinese) [牟宗信, 李国卿, 柳翠, 贾莉, 张成武 2003 真空科学与技术学报 23 243]
[9] Mu Z X, Guan B Y, Li G Q, Song L F 2002 Vacuum 3 31 (in Chinese) [牟宗信, 关秉羽, 李国卿, 宋林峰 2002 真空 3 31]
[10] Qiu Q Q 2012 CN102420091A (in Chinese) [邱清泉 2012 中国专利 CN102420091A]
[11] Wendt A E, Lieberman M A, Meuth H 1988 J. Vac. Sci. Technol. A:Vac. Surf. Films 6 1827
[12] Komath M, Rao G M, Mohan S 1999 Vacuum 52 307
[13] Sun Q, Zhang Z, Lin L, Qiu Q Q, Liu D Q, Zhang G M, Dai S T 2014 IEEE Trans. Appl. Supercon. 24 1
[14] Svadkovski I V, Golosov D A, Zavatskiy S M 2002 Vacuum 68 283
[15] Qiu Q Q, Li Q F, Su J J, Jiao Y, Jim F 2007 Chin. J. Vac. Sci. Technol. 27 493 (in Chinese) [邱清泉, 励庆孚, 苏静静, Jiao Y, Finely Jim 2007 真空科学与技术学报 27 493]
[16] Rossnagel S M, Kaufman H R 1987 J. Vac. Sci. Technol. A: Vac. Surf. Films 5 2276
[17] Rossnagel S M, Kaufman H R 1987 J. Vac. Sci. Technol. A: Vac. Surf. Films 5 88
[18] Bird G A 2003 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford: Clarendon Press)pp199–206
[19] Kolev I, Bogaerts A, Gijbels R 2005 Phys. Rev. E 72 056402
[20] Kondo S, Nanbu K 1999 J. Phys. D: Appl. Phys. 2 142
[21] Kondo S, Nanbu K 2001 J. Vac. Sci. Technol. A: Vac. Surf. Films 19 838
[22] Qiu Q Q, Li Q F, Su J J, Jiao Y, Jim F 2009 Nucl. Fusion Plasma Phys. 29 182 (in Chinese) [邱清泉, 励庆孚, 苏静静, Jiao Y, Finely Jim 2009 核聚变与等离子体物理 29 182]
[23] Shon C H, Lee J K, Lee H J, Yang Y, Chung T H 2002 IEEE Trans. Plasma Sci. 26 1635
[24] Shon C, Park J, Kang B, Lee J 1999 Jpn J. Appl. Phys. 38 4440
[25] Yu H, Wang T, Wu Z M, Jiang Y D, Jiang J, Jing H J 2009 Vacuum 46 14 (in Chinese) [于贺, 王涛, 吴志明, 蒋亚东, 姜晶, 靖红军 2009 真空 46 14]
[26] Qiu Q, Li Q, Su J, Jiao Y, Jim F 2008 Plasma Sci. Technol. 10 581
[27] Kwon U H, Choi S H, Park Y H, Lee W J 2005 Thin Solid Films 475 17
[28] Yamamura Y, Tawara H 1996 Atom Data Nucl. Data 62 149
计量
- 文章访问数: 6934
- PDF下载量: 227
- 被引次数: 0