搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光梳主动滤波放大实现锶原子光钟二级冷却光源

徐琴芳 尹默娟 孔德欢 王叶兵 卢本全 郭阳 常宏

引用本文:
Citation:

光梳主动滤波放大实现锶原子光钟二级冷却光源

徐琴芳, 尹默娟, 孔德欢, 王叶兵, 卢本全, 郭阳, 常宏

Optical frequency comb active filtering and amplification for second cooling laser of strontium optical clock

Xu Qin-Fang, Yin Mo-Juan, Kong De-Huan, Wang Ye-Bing, Lu Ben-Quan, Guo Yang, Chang Hong
PDF
导出引用
  • 提出一种结合注入锁定技术的主动滤波放大方法,将光梳直接注入锁定至光栅外腔半导体激光器,产生窄线宽激光光源,该光源可以用于锶原子光钟二级冷却.实验中,将中心波长为689 nm,带宽为10 nm的光梳种子光源注入689 nm光栅式外腔半导体激光器,通过半导体增益光谱与半导体光栅外腔,从飞秒光梳的多个纵模梳齿中挑选出一个纵模模式来进行增益放大,再通过模式竞争,实现单纵模连续光输出;同时,光梳的重复频率锁定在线宽为赫兹量级的698 nm超稳激光光源上,因此,注入锁定后输出的窄线宽激光也继承了超稳激光光源的光谱特性.利用得到的输出功率为12 mW的689 nm窄线宽激光光源实现了88Sr原子光钟的二级冷却过程,最终获得温度为3 K,原子数约为5106的冷原子团.该方法可拓展至原子光钟其他光源的获得,从而实现原子光钟的集成化和小型化.
    In this paper, we propose an optical frequency comb active filtering and amplification method combined with injection-locking technique to select and amplify a single mode from a femtosecond mode-locked laser. The key concept is to optically inject an optical frequency comb into a single mode grating external cavity semiconductor laser. The optical frequency comb based on a femtosecond mode-locked laser with a narrow mode spacing of 250 MHz is used as a master laser. The center wavelength of the optical frequency comb is 689 nm with a 10 nm spectral width. A single mode grating external cavity semiconductor laser with a grating of 1800 lines/mm is used as a slave laser, and the external-cavity length from the diode surface to the grating is approximately 50 mm. The master laser is injected into the slave laser, and in order to select a single comb mode, we adjust the power of the master laser to control the locking range of the slave laser whose linewidth is smaller than the optical frequency comb repetition rate (250 MHz). While the operating current of the slave laser is set to be 55 mA and a seeding power is adopted to be 240 W, a single longitudinal mode is selected and amplified from 2.5104 longitudinal modes of the femtosecond optical comb despite the low power of the single mode. By tuning the optical frequency comb repetition frequency, the single longitudinal mode follows the teeth of the femtosecond optical comb, indicating the success in the optical frequency comb active filtering and amplification. The locking range is measured to be about 20 MHz. Meanwhile, the repetition frequency of the optical frequency comb is locked to a narrow linewidth 698 nm laser system (Hz level), thus the slave laser inherits the spectral characteristics of the 698 nm laser system. The linewidth is measured to be 280 Hz which is limited by the test beating laser. Then a continuous-wave narrow linewidth 689 nm laser source with a power of 12 mW and a side-mode suppression ratio of 100 is achieved. This narrow linewidth laser is used as a second-stage cooling laser source in the 88Sr optical clock, the cold atoms with a temperature of 3 K and a number of 5106 are obtained. This method can also be used to obtain other laser sources for atomic optical clock, and thus enabling the integrating and miniaturizing of a clock system.
      通信作者: 常宏, changhong@ntsc.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11474282,61775220)、中国科学院战略性先导科技专项(B类)(批准号:XDB21030700)和中国科学院前沿科学重点研究项目(批准号:QYZDB-SSW-JSC004)资助的课题.
      Corresponding author: Chang Hong, changhong@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474282, 61775220), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB21030700), and the Key Research Project of Frontier Science of Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004).
    [1]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [2]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [3]

    Huntemann N, Sanner C, Lipphardt B, Tamm Chr, Peik E 2016 Phys. Rev. Lett. 116 063001

    [4]

    Matsubara K, Hachisu H, Li Y, Nagano S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T, Hosokawa M 2012 Opt. Express 20 22034

    [5]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71

    [6]

    Le Targat R, Lorini L, Le Coq Y, Zawada M, Guna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagrny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 405

    [7]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637

    [8]

    Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C, Fang Z J 2015 Chin. Phys. Lett. 32 090601

    [9]

    Xu Y L, Xu X Y 2016 Chin. Phys. B 25 103202

    [10]

    Liu H, Zhang X, Jiang K L, Wang J Q, Zhu Q, Xiong Z X, He L X, Lyu B L 2017 Chin. Phys. Lett. 34 020601

    [11]

    Liu K K, Zhao R C, Gou W, Fu X H, Liu H L, Yin S Q, Sun J F, Xu Z, Wang Y Z 2016 Chin. Phys. Lett. 33 070602

    [12]

    Liu H L, Yin S Q, Liu K K, Qian J, Xu Z, Hong T, Wang Y Z 2013 Chin. Phys. B 22 043701

    [13]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah O N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90

    [14]

    Blatt S, Ludlow A D, Campbell G K, Thomsen J W, Zelevinsky T, Boyd M M, Ye J 2008 Phys. Rev. Lett. 100 140801

    [15]

    Gurov M, Mcferran J J, Nagrny B, Tyumenev R, Xu Z, Le C Y, Le T R, Lemonde P, Lodewyck J, Bize S 2013 IEEE Trans. Instrum. Meas. 62 1568

    [16]

    Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Hfner S, Vogt S, Sterr U, Lisdat C 2014 New J. Phys. 16 073023

    [17]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630

    [18]

    Gao F, Liu H, Xu P, Wang Y B, Tian X, Chang H 2014 Acta Phys. Sin. 63 140704 (in Chinese)[高峰, 刘辉, 许朋, 王叶兵, 田晓, 常宏 2014 物理学报 63 140704]

    [19]

    Zhang S N, Zhang X G, Cui J Z, Jiang Z J, Shang H S, Zhu C W, Chang P C, Zhang L, Tu J H, Chen J B 2017 Rev. Sci. Instrum. 88 103106

    [20]

    Shang H S, Zhang X G, Zhang S N, Pan D, Chen H J, Chen J B 2017 Opt. Express 25 30459

    [21]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325

    [22]

    Moon H S, Kim E B, Park S E, Park C Y 2006 Appl. Phys. Lett. 89 181110

    [23]

    Wu D S, Slavk R, Marra G, Richardson D J 2013 J. Lightwave Technol. 31 2287

    [24]

    Wieczorek S, Krauskopf B, Simpson T B, Lenstra D 2005 Phys. Rep. 416 1

    [25]

    Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203 (in Chinese)[阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 物理学报 65 204203]

    [26]

    Liu H, Yin M J, Kong D H, Xu Q F, Zhang S G, Chang H 2015 Appl. Phys. Lett. 107 151104

    [27]

    Lawrence J S, Kane D M 1999 Opt. Commun. 167 273

    [28]

    Gao F, Liu H, Xu P, Tian X, Wang Y B, Ren J, Wu H B, Chang H 2014 AIP Adv. 4 027118

    [29]

    Xu Q F, Liu H, Lu B Q, Wang Y B, Yin M J, Kong D H, Ren J, Tian X, Chang H 2015 Chin. Opt. Lett. 13 100201

  • [1]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [2]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [3]

    Huntemann N, Sanner C, Lipphardt B, Tamm Chr, Peik E 2016 Phys. Rev. Lett. 116 063001

    [4]

    Matsubara K, Hachisu H, Li Y, Nagano S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T, Hosokawa M 2012 Opt. Express 20 22034

    [5]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71

    [6]

    Le Targat R, Lorini L, Le Coq Y, Zawada M, Guna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagrny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 405

    [7]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637

    [8]

    Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C, Fang Z J 2015 Chin. Phys. Lett. 32 090601

    [9]

    Xu Y L, Xu X Y 2016 Chin. Phys. B 25 103202

    [10]

    Liu H, Zhang X, Jiang K L, Wang J Q, Zhu Q, Xiong Z X, He L X, Lyu B L 2017 Chin. Phys. Lett. 34 020601

    [11]

    Liu K K, Zhao R C, Gou W, Fu X H, Liu H L, Yin S Q, Sun J F, Xu Z, Wang Y Z 2016 Chin. Phys. Lett. 33 070602

    [12]

    Liu H L, Yin S Q, Liu K K, Qian J, Xu Z, Hong T, Wang Y Z 2013 Chin. Phys. B 22 043701

    [13]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah O N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90

    [14]

    Blatt S, Ludlow A D, Campbell G K, Thomsen J W, Zelevinsky T, Boyd M M, Ye J 2008 Phys. Rev. Lett. 100 140801

    [15]

    Gurov M, Mcferran J J, Nagrny B, Tyumenev R, Xu Z, Le C Y, Le T R, Lemonde P, Lodewyck J, Bize S 2013 IEEE Trans. Instrum. Meas. 62 1568

    [16]

    Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Hfner S, Vogt S, Sterr U, Lisdat C 2014 New J. Phys. 16 073023

    [17]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630

    [18]

    Gao F, Liu H, Xu P, Wang Y B, Tian X, Chang H 2014 Acta Phys. Sin. 63 140704 (in Chinese)[高峰, 刘辉, 许朋, 王叶兵, 田晓, 常宏 2014 物理学报 63 140704]

    [19]

    Zhang S N, Zhang X G, Cui J Z, Jiang Z J, Shang H S, Zhu C W, Chang P C, Zhang L, Tu J H, Chen J B 2017 Rev. Sci. Instrum. 88 103106

    [20]

    Shang H S, Zhang X G, Zhang S N, Pan D, Chen H J, Chen J B 2017 Opt. Express 25 30459

    [21]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325

    [22]

    Moon H S, Kim E B, Park S E, Park C Y 2006 Appl. Phys. Lett. 89 181110

    [23]

    Wu D S, Slavk R, Marra G, Richardson D J 2013 J. Lightwave Technol. 31 2287

    [24]

    Wieczorek S, Krauskopf B, Simpson T B, Lenstra D 2005 Phys. Rep. 416 1

    [25]

    Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203 (in Chinese)[阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 物理学报 65 204203]

    [26]

    Liu H, Yin M J, Kong D H, Xu Q F, Zhang S G, Chang H 2015 Appl. Phys. Lett. 107 151104

    [27]

    Lawrence J S, Kane D M 1999 Opt. Commun. 167 273

    [28]

    Gao F, Liu H, Xu P, Tian X, Wang Y B, Ren J, Wu H B, Chang H 2014 AIP Adv. 4 027118

    [29]

    Xu Q F, Liu H, Lu B Q, Wang Y B, Yin M J, Kong D H, Ren J, Tian X, Chang H 2015 Chin. Opt. Lett. 13 100201

  • [1] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [2] 盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器. 物理学报, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [3] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量. 物理学报, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [4] 李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟黑体辐射频移评估. 物理学报, 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [5] 花飞, 方捻, 王陆唐. 半导体激光器储备池计算系统的工作点选取方法. 物理学报, 2019, 68(22): 224205. doi: 10.7498/aps.68.20191039
    [6] 郭阳, 尹默娟, 徐琴芳, 王叶兵, 卢本全, 任洁, 赵芳婧, 常宏. 锶原子光晶格钟自旋极化谱线的探测. 物理学报, 2018, 67(7): 070601. doi: 10.7498/aps.67.20172759
    [7] 林弋戈, 方占军. 锶原子光晶格钟. 物理学报, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [8] 马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和. 基于飞秒锁模光纤激光脉冲基频光的差频产生红外光梳. 物理学报, 2018, 67(9): 094207. doi: 10.7498/aps.67.20172503
    [9] 孙波, 吴加贵, 王顺天, 吴正茂, 夏光琼. 基于平行偏振光注入的1550nm波段垂直腔表面发射激光器获取窄线宽光子微波的理论和实验研究. 物理学报, 2016, 65(1): 014207. doi: 10.7498/aps.65.014207
    [10] 刘江, 刘晨, 师红星, 王璞. 342W全光纤结构窄线宽连续掺铥光纤激光器. 物理学报, 2016, 65(19): 194209. doi: 10.7498/aps.65.194209
    [11] 焦东东, 高静, 刘杰, 邓雪, 许冠军, 陈玖朋, 董瑞芳, 刘涛, 张首刚. 用于光频传递的通信波段窄线宽激光器研制及应用. 物理学报, 2015, 64(19): 190601. doi: 10.7498/aps.64.190601
    [12] 毛嵩, 吴正茂, 樊利, 杨海波, 赵茂戎, 夏光琼. 基于次谐波调制光注入半导体激光器获取窄线宽微波信号的实验研究. 物理学报, 2014, 63(24): 244204. doi: 10.7498/aps.63.244204
    [13] 陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼. 基于双光注入锁定1550 nm垂直腔表面发射半导体激光器产生可调谐毫米波. 物理学报, 2013, 62(10): 104207. doi: 10.7498/aps.62.104207
    [14] 吴学健, 尉昊赟, 朱敏昊, 张继涛, 李岩. 基于飞秒光频梳的双频He-Ne激光器频率测量. 物理学报, 2012, 61(18): 180601. doi: 10.7498/aps.61.180601
    [15] 高峰, 王叶兵, 田晓, 许朋, 常宏. 锶原子三重态谱线的观测及在光钟中的应用. 物理学报, 2012, 61(17): 173201. doi: 10.7498/aps.61.173201
    [16] 林晓东, 邓涛, 解宜原, 吴加贵, 陈建国, 吴正茂, 夏光琼. 基于光注入半导体激光器单周期振荡的光子微波产生及全光线宽窄化. 物理学报, 2012, 61(19): 194212. doi: 10.7498/aps.61.194212
    [17] 吴波, 于晋龙, 王文睿, 韩丙辰, 郭精忠, 罗俊, 王菊, 张晓媛, 刘毅, 杨恩泽. 基于注入半导体激光器的微波副载波相位调制信号产生. 物理学报, 2012, 61(5): 054208. doi: 10.7498/aps.61.054208
    [18] 安 义, 王云才, 张明江, 牛生晓, 王安帮. 基于Fabry-Perot半导体激光器实现全光波长转换及其最优纵模选择. 物理学报, 2008, 57(8): 4995-5000. doi: 10.7498/aps.57.4995
    [19] 陈子伦, 侯 静, 周 朴, 刘 亮, 姜宗福. 两个光纤激光器的互相注入锁定. 物理学报, 2007, 56(12): 7046-7050. doi: 10.7498/aps.56.7046
    [20] 郭长志, 刘鹏. 相干光注入半导体激光器锁定过程的稳定性和到达混沌态的各种不稳定现象. 物理学报, 1990, 39(11): 1730-1738. doi: 10.7498/aps.39.1730
计量
  • 文章访问数:  6486
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-25
  • 修回日期:  2018-02-02
  • 刊出日期:  2019-04-20

/

返回文章
返回