搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于忆阻器的多涡卷混沌系统及其脉冲同步控制

闫登卫 王丽丹 段书凯

引用本文:
Citation:

基于忆阻器的多涡卷混沌系统及其脉冲同步控制

闫登卫, 王丽丹, 段书凯

Memristor-based multi-scroll chaotic system and its pulse synchronization control

Yan Deng-Wei, Wang Li-Dan, Duan Shu-Kai
PDF
导出引用
  • 忆阻器是一种具有记忆功能和纳米级尺寸的非线性元件,作为混沌系统的非线性部分,能够提高混沌系统的信号随机性和复杂度.本文基于增广L系统设计了一个三维忆阻混沌系统.仅仅通过改变系统的一个参数,该系统能产生单涡巻、双涡卷和四涡巻的混沌吸引子,说明该系统具有丰富的混沌特性.首先对该忆阻混沌系统的基本动力学行为进行了理论分析和数值仿真,如平衡点稳定性、对称性,Lyapunov指数和维数,分岔图和Poincare截面等.同时,建立了模拟该忆阻混沌系统的SPICE(simulation program with integrated circuit emphasis)电路,给出了不同参数下的电路实验相图,其仿真结果与数值分析相符,从而验证了该忆阻混沌系统的混沌产生能力.由于脉冲同步只在离散时刻传递信息,能量消耗小,同步速度快,易于实现单信道传输,因而在混沌保密通信中更具有实用性.因此,本文从最大Lyapunov指数的角度实现了该忆阻混沌系统的脉冲混沌同步,数值仿真证实了忆阻混沌系统的存在性以及脉冲同步控制的可行性,为进一步研究该忆阻混沌系统在语音保密通信和信息处理中的应用提供了实验基础.
    The memristor is a nonlinear element and intrinsically possesses memory function. When it works as nonlinear part of a chaotic system, the complexity and the randomness of signal will be enhanced. In this paper memristor is introduced into a three-dimensional chaotic system based on the augmented L system. The interesting and promising behaviors of complex single, double and four-scroll chaotic attractors generated only by varying a parameter have not been reported in memristive chaotic system and thus they deserve to be further investigated. It is also obvious that such a simple change of one parameter could be used to generate a variety of quite complex attractors. Therefore, as a nonlinear device the memristor plays an important role in this system. Firstly, some basic dynamical properties of the memristive chaotic system, including symmetry and in-variance, the existence of attractor, equilibrium, and stability are investigated in detail. By numerically simulating the power spectrum, Lyapunov exponent, Poincare map and bifurcation diagram, in this paper we verify that the proposed system has abundant dynamical behaviors. The sensitivities of system parameters to the chaotic behaviors are further explored by calculating, in detail, its Lyapunov exponent spectrum and bifurcation diagrams. The results of simulation and experiment are in good agreement, thereby proving the veracity of analysis. The memristive chaotic circuit is designed using the memristor, operational amplifier, analog multiplier and other conventional components. The circuit implementation of the memristive system is simulated using SPICE (simulation program with integrated circuit emphasis). The SPICE simulation results and the theoretical analysis are found to be in good agreement, and thus verifying that the system can produce chaos. Pulse synchronization has the following characteristics: low energy consumption, fast synchronization and easy-to-implement single-channel transmission. Therefore, it is more practical in chaotic secure communication. Subsequently the pulse chaos synchronization is realized from the perspective of the maximum Lyapunov exponent, and numerical simulations show the existence of new memristive chaotic system and the feasibility of pulse synchronization control, and also provide an experimental basis for further studying the applications of the memristive chaotic system in voice secure communication and information processing.
      通信作者: 王丽丹, ldwang@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61571372,61672436)、中央高校基本科研业务费(批准号:XDJK2016A001,XDJK2017A005)和重庆市基础科学与前沿技术研究(批准号:cstc2017jcyjBX0050)资助的课题.
      Corresponding author: Wang Li-Dan, ldwang@swu.edu.cn
    • Funds: Project supported by the National Natural Science of China (Grant Nos. 61571372, 61672436), the Fundamental Research Funds for the Central Universities, China (Grant Nos. XDJK2016A001, XDJK2017A005), and the Chongqing Basic Science and Frontier Technology Research, China (Grant No. cstc2017jcyjBX0050).
    [1]

    Chua L O 1971 IEEE Trans. Circ. Theor. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 83

    [3]

    Tour J M, He T 2008 Nature 453 42

    [4]

    Yang Y C, Pan F, Liu Q, Liu M, Zeng F 2009 Nano Lett. 9 1636

    [5]

    Pershin Y V, Di Ventra M 2010 Neural Netw. 23 881

    [6]

    Pershin Y V, Fontaine S L, Di Ventra M 2010 Neural Netw. 23 881

    [7]

    Wang L D, Li H F, Duan S K, Huang T W 2016 Neurocomputing 171 23

    [8]

    Wang H M, Duan S K, Huang T W, Wang L D, Li C D 2017 IEEE Trans. Neur. Net. Lear. 28 766

    [9]

    Shin S, Kim K, Kang S M 2011 IEEE Trans. Nanotechnol. 10 266

    [10]

    Witrisal K 2009 Electron. Lett. 45 713

    [11]

    Itoh M, Chua L O 2008 Int. J. Bifurcat. Chaos 18 3183

    [12]

    Bharathwaj M, Kokate P P 2009 IETE Tech. Rev. 26 415

    [13]

    Muthuswamy B 2010 Int. J Bifurcat. Chaos 20 1335

    [14]

    Bao B C, Xu J P, Zhou G H, Liu Z 2011 Chin. Phys. B 20 109

    [15]

    Bao B C, Xu J P, Liu Z 2010 Chin. Phys. Lett. 27 51

    [16]

    Bao B C, Liu Z, Xu J P 2010 Electron. Lett. 46 237

    [17]

    Wang L D, Duan S K, Drakakis E, He P F, Liao X F 2012 Int. J. Bifurcat. Chaos 22 241

    [18]

    Iu H H C, Yu D S, Fitch A L, Chen H 2011 IEEE Trans. Circ. Syst. I 58 1337

    [19]

    Wang W, Zeng Y C, Sun R T 2017 Acta Phys. Sin. 66 040502(in Chinese) [王伟, 曾以成, 孙睿婷 2017 物理学报 66 040502]

    [20]

    Ruan J Y, Sun K H, Mou J 2016 Acta Phys. Sin. 65 190502(in Chinese) [阮静雅, 孙克辉, 牟俊 2016 物理学报 65 190502]

    [21]

    Joglekar Y N, Wolf S J 2009 Eur.J. Phys. 30 661

    [22]

    Xu Y M, Wang L D, Duan S K 2016 Acta Phys. Sin. 65 120503(in Chinese) [许雅明, 王丽丹, 段书凯 2016 物理学报 65 120503]

    [23]

    Min G Q, Wang L D, Duan S K 2015 Acta Phys. Sin. 64 210507(in Chinese) [闵国旗, 王丽丹, 段书凯 2015 物理学报 64 210507]

    [24]

    Wu J N, Wang L D, Chen G R, Duan S K 2016 Chaos, Solitons Fract. 92 20

    [25]

    Min G Q, Wang L D, Duan S K 2016 Int. J. Bifurcat. Chaos 26 1650129

    [26]

    Wang X Y 2012 Synchronization of Chaotic System and Its Application in Secure Communication (Beijing: The Science Press) pp173-187 (in Chinese) [王兴元 2012 混沌系统的同步及在保密通信中的应用(北京: 科学出版社) 第173187页]

    [27]

    Itoh M, Yang T, Chua L O 2001 Int. J. Bifurcat. Chaos 11 551

    [28]

    Li C D, Liao X F 2004 Chaos, Solitons Fract. 22 857

    [29]

    Wang Y W, Guan Z H, Xiao J 2004 Chaos 14 199

    [30]

    Ren Q S, Zhao J Y 2006 Phys. Lett. A 355 342

    [31]

    L J H, Chen G R 1999 Int. J. Bifurcat. Chaos 9 1420

    [32]

    L J H, Lu J A, Chen S H 2002 Chaotic Time Series Analysis and Its Application (Wuhan: The Wuhan University Press) pp176-177 (in Chinese) [吕金虎, 陆君安, 陈士华 2002 混沌时间序列分析及其应用 (武汉:武汉大学出版社) 第176177页]

  • [1]

    Chua L O 1971 IEEE Trans. Circ. Theor. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 83

    [3]

    Tour J M, He T 2008 Nature 453 42

    [4]

    Yang Y C, Pan F, Liu Q, Liu M, Zeng F 2009 Nano Lett. 9 1636

    [5]

    Pershin Y V, Di Ventra M 2010 Neural Netw. 23 881

    [6]

    Pershin Y V, Fontaine S L, Di Ventra M 2010 Neural Netw. 23 881

    [7]

    Wang L D, Li H F, Duan S K, Huang T W 2016 Neurocomputing 171 23

    [8]

    Wang H M, Duan S K, Huang T W, Wang L D, Li C D 2017 IEEE Trans. Neur. Net. Lear. 28 766

    [9]

    Shin S, Kim K, Kang S M 2011 IEEE Trans. Nanotechnol. 10 266

    [10]

    Witrisal K 2009 Electron. Lett. 45 713

    [11]

    Itoh M, Chua L O 2008 Int. J. Bifurcat. Chaos 18 3183

    [12]

    Bharathwaj M, Kokate P P 2009 IETE Tech. Rev. 26 415

    [13]

    Muthuswamy B 2010 Int. J Bifurcat. Chaos 20 1335

    [14]

    Bao B C, Xu J P, Zhou G H, Liu Z 2011 Chin. Phys. B 20 109

    [15]

    Bao B C, Xu J P, Liu Z 2010 Chin. Phys. Lett. 27 51

    [16]

    Bao B C, Liu Z, Xu J P 2010 Electron. Lett. 46 237

    [17]

    Wang L D, Duan S K, Drakakis E, He P F, Liao X F 2012 Int. J. Bifurcat. Chaos 22 241

    [18]

    Iu H H C, Yu D S, Fitch A L, Chen H 2011 IEEE Trans. Circ. Syst. I 58 1337

    [19]

    Wang W, Zeng Y C, Sun R T 2017 Acta Phys. Sin. 66 040502(in Chinese) [王伟, 曾以成, 孙睿婷 2017 物理学报 66 040502]

    [20]

    Ruan J Y, Sun K H, Mou J 2016 Acta Phys. Sin. 65 190502(in Chinese) [阮静雅, 孙克辉, 牟俊 2016 物理学报 65 190502]

    [21]

    Joglekar Y N, Wolf S J 2009 Eur.J. Phys. 30 661

    [22]

    Xu Y M, Wang L D, Duan S K 2016 Acta Phys. Sin. 65 120503(in Chinese) [许雅明, 王丽丹, 段书凯 2016 物理学报 65 120503]

    [23]

    Min G Q, Wang L D, Duan S K 2015 Acta Phys. Sin. 64 210507(in Chinese) [闵国旗, 王丽丹, 段书凯 2015 物理学报 64 210507]

    [24]

    Wu J N, Wang L D, Chen G R, Duan S K 2016 Chaos, Solitons Fract. 92 20

    [25]

    Min G Q, Wang L D, Duan S K 2016 Int. J. Bifurcat. Chaos 26 1650129

    [26]

    Wang X Y 2012 Synchronization of Chaotic System and Its Application in Secure Communication (Beijing: The Science Press) pp173-187 (in Chinese) [王兴元 2012 混沌系统的同步及在保密通信中的应用(北京: 科学出版社) 第173187页]

    [27]

    Itoh M, Yang T, Chua L O 2001 Int. J. Bifurcat. Chaos 11 551

    [28]

    Li C D, Liao X F 2004 Chaos, Solitons Fract. 22 857

    [29]

    Wang Y W, Guan Z H, Xiao J 2004 Chaos 14 199

    [30]

    Ren Q S, Zhao J Y 2006 Phys. Lett. A 355 342

    [31]

    L J H, Chen G R 1999 Int. J. Bifurcat. Chaos 9 1420

    [32]

    L J H, Lu J A, Chen S H 2002 Chaotic Time Series Analysis and Its Application (Wuhan: The Wuhan University Press) pp176-177 (in Chinese) [吕金虎, 陆君安, 陈士华 2002 混沌时间序列分析及其应用 (武汉:武汉大学出版社) 第176177页]

  • [1] 吴朝俊, 方礼熠, 杨宁宁. 含有偏置电压源的非齐次分数阶忆阻混沌电路动力学分析与实验研究. 物理学报, 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 物理学报, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [3] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [4] 肖利全, 段书凯, 王丽丹. 基于Julia分形的多涡卷忆阻混沌系统. 物理学报, 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761
    [5] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [6] 王伟, 曾以成, 孙睿婷. 含三个忆阻器的六阶混沌电路研究. 物理学报, 2017, 66(4): 040502. doi: 10.7498/aps.66.040502
    [7] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现. 物理学报, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [8] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现. 物理学报, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [9] 俞亚娟, 王在华. 一个分数阶忆阻器模型及其简单串联电路的特性. 物理学报, 2015, 64(23): 238401. doi: 10.7498/aps.64.238401
    [10] 洪庆辉, 李志军, 曾金芳, 曾以成. 基于电流反馈运算放大器的忆阻混沌电路设计与仿真. 物理学报, 2014, 63(18): 180502. doi: 10.7498/aps.63.180502
    [11] 杨芳艳, 冷家丽, 李清都. 基于Chua电路的四维超混沌忆阻电路. 物理学报, 2014, 63(8): 080502. doi: 10.7498/aps.63.080502
    [12] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [13] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [14] 包伯成, 胡文, 许建平, 刘中, 邹凌. 忆阻混沌电路的分析与实现. 物理学报, 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
    [15] 许喆, 刘崇新, 杨韬. 一种新型混沌系统的分析及电路实现. 物理学报, 2010, 59(1): 131-139. doi: 10.7498/aps.59.131
    [16] 李春彪, 王翰康, 陈谡. 一个新的恒Lyapunov指数谱混沌吸引子与电路实现. 物理学报, 2010, 59(2): 783-791. doi: 10.7498/aps.59.783
    [17] 李春彪, 王德纯. 一种恒Lyapunov指数谱混沌吸引子及其Jerk电路实现. 物理学报, 2009, 58(2): 764-770. doi: 10.7498/aps.58.764
    [18] 禹思敏. 四阶Colpitts混沌振荡器. 物理学报, 2008, 57(6): 3374-3379. doi: 10.7498/aps.57.3374
    [19] 王光义, 丘水生, 许志益. 一个新的三维二次混沌系统及其电路实现. 物理学报, 2006, 55(7): 3295-3301. doi: 10.7498/aps.55.3295
    [20] 郝建红, 李 伟. 混沌吸引子在两个周期振子耦合下的相同步. 物理学报, 2005, 54(8): 3491-3496. doi: 10.7498/aps.54.3491
计量
  • 文章访问数:  7392
  • PDF下载量:  445
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-03
  • 修回日期:  2018-02-19
  • 刊出日期:  2018-06-05

/

返回文章
返回