搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

能量天平及千克单位重新定义研究进展

李正坤 张钟华 鲁云峰 白洋 许金鑫 胡鹏程 刘永猛 由强 王大伟 贺青 谭久彬

引用本文:
Citation:

能量天平及千克单位重新定义研究进展

李正坤, 张钟华, 鲁云峰, 白洋, 许金鑫, 胡鹏程, 刘永猛, 由强, 王大伟, 贺青, 谭久彬

Progress of joule balance and redifination of Kilogram

Li Zheng-Kun, Zhang Zhong-Hua, Lu Yun-Feng, Bai Yang, Xu Jin-Xin, Hu Peng-Cheng, Liu Yong-Meng, You Qiang, Wang Da-Wei, He Qing, Tan Jiu-Bin
PDF
导出引用
  • 质量单位千克是国际单位制7个基本单位中惟一一个仍以实物定义和复现的基本单位.作为一种实物,其量值必然会因为环境因素及使用时的磨损而发生变化.但由于缺少更高一级的参考标准对其进行考察,国际千克原器的真实变化情况无从得知.国际计量委员会建议采用普朗克常数对千克重新定义,号召各个国家开展普朗克常数的精密测量研究工作,并要求至少有三种独立方案提供有效测量数据.自20世纪70年代起,英、美等国采用功率天平方案进行研究,国际阿伏伽德罗常数合作组织则采用了X射线单晶硅密度的方案.为了应对国际单位制的重大变革,2006年中国计量科学研究院提出了用能量天平法测量普朗克常数的新方案,其特点是可避免国外方案中困难的动态测量.2013年原型实验装置研制成功,证实了能量天平方案原理可行.此后,中国计量科学研究院开始了新一代能量天平装置的研制.2017年5月,中国计量科学研究院提交了普朗克常数的测量结果,不确定度为2.4×10-7(k=1),该数据被国际科学数据委员会收入参考数据库.但由于数据的不确定度尚未进入10-8量级,未被用于普朗克常数的定值.目前中国计量科学研究院正对几项主要的不确定度来源进行研究,预计在未来的两年内达可到10-8量级的不确定度.
    Kilogram, the unit of mass, is the last one of seven base units in International System of Units (SI) which is still defined and kept by a material artifact. 1 kg is defined as the mass of the International Prototype of the Kilogram (IPK) kept at the Bureau International des Poids et Mesures (BIPM) in Paris. One of the major disadvantages of this definition is the fact that the amount of material constituting the IPK changes with time. Because a more stable mass reference does not exist, the variation of IPK is completely unknown so far. The International Committee for Weights and Measures (CIPM) recommended redefining the kilogram by fixing the numerical value of the Planck constant h and called on every national metrology institute to study the measurement of the h. To avoid possible system errors from one method, more experiments especially based on different principles are expected and encouraged for the final determination of the Planck constant. The CCM required that at least three consistent results should be obtained before the redefinition. Since 1970 s, the Kibble balance (also known as the Kibble balance) experiment has been used by a number of national metrology institutes such as NPL, NIST, METAS, LNE and BIPM. The IAC including the PTB, NMIJ and NMIA used the XRCD method to measure the Avogadro constant. To make contribution to the redefinition of kilogram, the National Institute of Metrology of China (NIM) proposed a joule balance method in 2006, which is also an electrical way but different from the watt balance method in that the dynamic phase is replaced with a static phase to avoid the trouble in the dynamic measurement. The progress of these approaches and the current situation of the redefinition of the kilogram are presented in this paper. In 2013, a model apparatus was built to verify the principle of the joule balance. Then NIM started to build its new joule balance aiming to obtain an uncertainty of 10-8 level since 2013. In Dec. 2016, the new apparatus was built and could be used to measure the Planck constant h in vacuum. In May 2017, the measurement result was submitted to the Metrologia and accepted by the CODATA TGFC as the input data. However, the measurement result has an uncertainty bigger than 10-8 and was not used for the final determination of the h value. At present, the joule balance group of NIM, together with the Harbin Institute of Technology, Tsinghua University and China Jiliang University is still making great efforts to improve the joule balance apparatus. The uncertainty of 10-8 level is expected to be achieved in the next two years.
      通信作者: 李正坤, lzk@nim.ac.cn;zzh@nim.ac.cn ; 张钟华, lzk@nim.ac.cn;zzh@nim.ac.cn
    • 基金项目: 国家自然科学基金重大研究计划重点项目(批准号:91536224)资助的课题.
      Corresponding author: Li Zheng-Kun, lzk@nim.ac.cn;zzh@nim.ac.cn ; Zhang Zhong-Hua, lzk@nim.ac.cn;zzh@nim.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 91536224).
    [1]

    Taylor B N, Mohr P J 2001 IEEE Trans. Instrum. Meas. 50 563

    [2]

    The International System of Units 8th edition 2006 (www.bipm.org/en/si/)

    [3]

    Zhang Z H 2002 China Metrology 8 5 (in Chinese) [张钟华 2002 中国计量 8 5]

    [4]

    Josephson B D 1962 Phys. Lett. 1 251

    [5]

    von Klitzing K, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494

    [6]

    Zhang Z, He Q 2001 Modern Measurement and Test 3 3 (in Chinese) [张钟华, 贺青 2001 现代计量测试 3 3]

    [7]

    Davis R 2003 Metrologia 40 299

    [8]

    Girard G 1994 Metrologia 31 317

    [9]

    Li S, Zhang Z, Zhao W, Li Z, Huang S 2015 Chin. Phys. B 24 1

    [10]

    Draft 9th SI Brochure, https://www.bipm.org/cc/CCU/Allowed/23/Draft-SI-Brochure-2018.pdf

    [11]

    Andreas B, Azuma Y, Bartl G, Becker P, Bettin H, Borys M, Busch I, Gray M, Fuchs P, Fujii K 2011 Phys. Rev. Lett. 106 030801

    [12]

    Azuma Y, Barat P, Bartl G, Bettin H, Borys M, Busch I, Cibik L, D'Agostino G, Fujii K, Fujimoto H 2015 Metrologia 52 60

    [13]

    Bartl G, Becker P, Beckhoff B 2017 Metrologia 54 693

    [14]

    Kuramoto N, Mizushima S, Zhang L, Fujita K, Azuma Y, Kurokawa A, Okubo S, Inaba H, Fujii K 2017 Metrologia 54 716

    [15]

    Kibble B P 1976 Atomic Masses & Fundamental Constants (Vol.16) (New York: Plenum Press) pp545-551

    [16]

    Kibble B P, Robinson I A, Belliss J H 1990 Metrologia 27 173

    [17]

    Robinson I A 2012 Metrologia 49 113

    [18]

    Stock M 2013 Metrologia 50 R1

    [19]

    Zhang Z, He Q, Li Z 2006 Proceedings of the Conference on Precision Electromagnetic Measurement Torino, Italy, July 9-14, 2006 pp126-127

    [20]

    Robinson I A, Kibble B P 2007 Metrologia 44 427

    [21]

    Kibble B P, Robinson I A 2014 Metrologia 51 S132

    [22]

    Olsen P T, Elmquist R E, Phillips W D, Williams E R, Jones G R, Bower V E 1989 IEEE Trans. Instrum. Meas. 38 238

    [23]

    Olsen P T, Tew W L, Williams E R 1991 IEEE Trans. Instrum. Meas. 40 115

    [24]

    Steiner R L, Gillespie A D, Fujii K 1997 IEEE Trans. Instrum. Meas. 46 601

    [25]

    Steiner R L, Williams E R, Liu R 2007 IEEE Trans. Instrum. Meas. 56 592

    [26]

    Schlamminger S, Haddad D, Seifert F, Chao L S, Newell D B, Liu R, Steiner R L, Pratt J R 2014 Metrologia 51 S15

    [27]

    Schlamminger S, Steiner R L, Haddad D, Newell D B, Seifert F, Chao L S, Liu R, Williams E R, Pratt J R 2015 Metrologia 52 L5

    [28]

    Schlamminger S 2013 IEEE Trans. Instrum. Meas. 62 1524

    [29]

    Haddad D, Seifert F, Chao L S, Possolo A, Newell D B, Pratt J R, Williams C J, Schlamminger S 2017 Metrologia 54 633

    [30]

    Beer W, Jeanneret B, Jeckelmann B, Richard P, Courteville A, Salvadé Y, Dandliker R 1999 IEEE Trans. Instrum. Meas. 48 192

    [31]

    Eichenberger A, Baumann H, Jeanneret B, Jeckelmann B, Richard P, Beer W 2011 Metrologia 48 133

    [32]

    Baumann H, Eichenberger A, Cosandier F, Jeckelmann B, Clavel R, Reber D, Tommasini D 2013 Metrologia 50 235

    [33]

    Genevès G, Gournay P, Gosset A 2005 IEEE Trans. Instrum. Meas. 54 850

    [34]

    Thomas M, Espel P, Ziane D 2015 Metrologia 52 433

    [35]

    Thomas M, Ziane D, Pinot P 2017 Metrologia 54 468

    [36]

    Picard A, Fang H, Kiss A, de Mirandés E, Stock M, Urano C 2009 IEEE Trans. Instrum. Meas. 58 924

    [37]

    Fang H 2016 Digest of Conf. on Precision Electromagnetic Measurements (Ottawa, Canada)

    [38]

    Steele A G, Meija J, Sanchez C A, Yang L, Wood B M, Sturgeon R E, Mester Z, Inglis A D 2012 Metrologia 49 L8

    [39]

    Sanchez C A, Wood B M, Green R G, Liard J O, Inglis D 2014 Metrologia 51 S5

    [40]

    Wood B M, Sanchez C A, Green R G, Liard J O 2017 Metrologia 54 399

    [41]

    Sutton C M 2009 Metrologia 46 467

    [42]

    Kim D, Woo B C, Lee K C, Choi K B, Kim J A, Kim J W, Kim J H 2014 Metrologia 51 S96

    [43]

    Ahmedov H 2016 Proceedings of the Conference on Precision Electromagnetic Measurement Ottawa, Canada, Jul 10-15, 2016

    [44]

    Ahmedov H, BabayigitAskin N, Korutlu B, Orhan R 2018 Metrologia 55 326

    [45]

    Zhang Z, He Q, Li Z, Han B, Lu Y, Lan J, Li C, Li S, Xu J, Wang N, Wang G, Gong H 2014 Metrologia 51 s25

    [46]

    Xu J, Zhang Z, Li Z 2016 Metrologia 53 86

    [47]

    Zhang Z, Lu Y, Hu P, Liu Y, Xu J, Bai Y, Zeng T, Wang G, You Q, Li C, Li S, Wang K, He Q, Tan J 2017 IEEE Trans. Instrum. Meas. 66 1329

    [48]

    Li Z, Zhang Z, Lu Y, Hu P, Liu Y, Xu J, Bai Y, Zeng T, Wang G, You Q, Wang D, Li S, He Q, Tan J 2017 Metrologia 54 763

    [49]

    Jones N 2012 Nature 481 14

    [50]

    Mohr P J, Newell D B, Taylor B N, Tiesinga E 2018 Metrologia 55 125

    [51]

    Newell D B, Cabiati F, Fischer J, Fujii K, Karshenboim S G, Margolis H S, de Mirandés E, Mohr P J, Nez F, Pachucki K, Quinn T J, Taylor B N, Wang M, Wood B M, Zhang Z 2018 Metrologia 55 L13

    [52]

    CCU Recomendation U1 (2017) On the possible redefinition of the kilogram, ampere, kelvin and mole in 2018, https://www.bipm.org/cc/CCU/Allowed/23/CCU_Final_Recommendation_U1_2017.pdf [2018-7-24]

    [53]

    Decision CIPM/106-10, https://www.bipm.org/utils/en/pdf/CIPM/CIPM2017-Decisions-EN.pdf [2018-7-24]

    [54]

    Li Z, Zhang Z, He Q, Fu Y, Zhao J, Han B, Li S, Lan J, Li C 2011 IEEE Trans. Instrum. Meas. 60 2292

    [55]

    Lan J, Zhang Z, Li Z, He Q, Fu Y, Li S, Han B, Zhao J, Lu Y 2012 IEEE Trans. Instrum. Meas. 61 2524

    [56]

    Li Z, Zhang Z, He Q, Han B, Lu Y, Xu J, Li S, Li C, Wang G, Zeng T, Bai Y 2015 IEEE Trans. Instrum. Meas. 64 1676

    [57]

    Zhang Z, Li Z, Han B 2015 IEEE Trans. Instrum. Meas. 64 1539

    [58]

    Wang G, Xu J, You Q 2017 Meas. Sci. Technol. 28 015004

    [59]

    Yang H, Lu Y, Hu P, Li Z, Zeng T, He Q 2014 Meas. Sci. Technol. 25 233

    [60]

    Bai Y, Hu P, Lu Y, Li Z, Zang Z, Tan J 2016 IEEE Trans. Instrum. Meas. 66 1

    [61]

    Zeng T, Lu Y, Liu Y, Yang H, Bai Y, Hu P, Li Z, Zhang Z, Tan J 2016 IEEE Trans. Instrum. Meas. 65 458

    [62]

    You Q, Xu J, Li Z, Li S 2017 IEEE Trans. Instrum. Meas. 66 1289

  • [1]

    Taylor B N, Mohr P J 2001 IEEE Trans. Instrum. Meas. 50 563

    [2]

    The International System of Units 8th edition 2006 (www.bipm.org/en/si/)

    [3]

    Zhang Z H 2002 China Metrology 8 5 (in Chinese) [张钟华 2002 中国计量 8 5]

    [4]

    Josephson B D 1962 Phys. Lett. 1 251

    [5]

    von Klitzing K, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494

    [6]

    Zhang Z, He Q 2001 Modern Measurement and Test 3 3 (in Chinese) [张钟华, 贺青 2001 现代计量测试 3 3]

    [7]

    Davis R 2003 Metrologia 40 299

    [8]

    Girard G 1994 Metrologia 31 317

    [9]

    Li S, Zhang Z, Zhao W, Li Z, Huang S 2015 Chin. Phys. B 24 1

    [10]

    Draft 9th SI Brochure, https://www.bipm.org/cc/CCU/Allowed/23/Draft-SI-Brochure-2018.pdf

    [11]

    Andreas B, Azuma Y, Bartl G, Becker P, Bettin H, Borys M, Busch I, Gray M, Fuchs P, Fujii K 2011 Phys. Rev. Lett. 106 030801

    [12]

    Azuma Y, Barat P, Bartl G, Bettin H, Borys M, Busch I, Cibik L, D'Agostino G, Fujii K, Fujimoto H 2015 Metrologia 52 60

    [13]

    Bartl G, Becker P, Beckhoff B 2017 Metrologia 54 693

    [14]

    Kuramoto N, Mizushima S, Zhang L, Fujita K, Azuma Y, Kurokawa A, Okubo S, Inaba H, Fujii K 2017 Metrologia 54 716

    [15]

    Kibble B P 1976 Atomic Masses & Fundamental Constants (Vol.16) (New York: Plenum Press) pp545-551

    [16]

    Kibble B P, Robinson I A, Belliss J H 1990 Metrologia 27 173

    [17]

    Robinson I A 2012 Metrologia 49 113

    [18]

    Stock M 2013 Metrologia 50 R1

    [19]

    Zhang Z, He Q, Li Z 2006 Proceedings of the Conference on Precision Electromagnetic Measurement Torino, Italy, July 9-14, 2006 pp126-127

    [20]

    Robinson I A, Kibble B P 2007 Metrologia 44 427

    [21]

    Kibble B P, Robinson I A 2014 Metrologia 51 S132

    [22]

    Olsen P T, Elmquist R E, Phillips W D, Williams E R, Jones G R, Bower V E 1989 IEEE Trans. Instrum. Meas. 38 238

    [23]

    Olsen P T, Tew W L, Williams E R 1991 IEEE Trans. Instrum. Meas. 40 115

    [24]

    Steiner R L, Gillespie A D, Fujii K 1997 IEEE Trans. Instrum. Meas. 46 601

    [25]

    Steiner R L, Williams E R, Liu R 2007 IEEE Trans. Instrum. Meas. 56 592

    [26]

    Schlamminger S, Haddad D, Seifert F, Chao L S, Newell D B, Liu R, Steiner R L, Pratt J R 2014 Metrologia 51 S15

    [27]

    Schlamminger S, Steiner R L, Haddad D, Newell D B, Seifert F, Chao L S, Liu R, Williams E R, Pratt J R 2015 Metrologia 52 L5

    [28]

    Schlamminger S 2013 IEEE Trans. Instrum. Meas. 62 1524

    [29]

    Haddad D, Seifert F, Chao L S, Possolo A, Newell D B, Pratt J R, Williams C J, Schlamminger S 2017 Metrologia 54 633

    [30]

    Beer W, Jeanneret B, Jeckelmann B, Richard P, Courteville A, Salvadé Y, Dandliker R 1999 IEEE Trans. Instrum. Meas. 48 192

    [31]

    Eichenberger A, Baumann H, Jeanneret B, Jeckelmann B, Richard P, Beer W 2011 Metrologia 48 133

    [32]

    Baumann H, Eichenberger A, Cosandier F, Jeckelmann B, Clavel R, Reber D, Tommasini D 2013 Metrologia 50 235

    [33]

    Genevès G, Gournay P, Gosset A 2005 IEEE Trans. Instrum. Meas. 54 850

    [34]

    Thomas M, Espel P, Ziane D 2015 Metrologia 52 433

    [35]

    Thomas M, Ziane D, Pinot P 2017 Metrologia 54 468

    [36]

    Picard A, Fang H, Kiss A, de Mirandés E, Stock M, Urano C 2009 IEEE Trans. Instrum. Meas. 58 924

    [37]

    Fang H 2016 Digest of Conf. on Precision Electromagnetic Measurements (Ottawa, Canada)

    [38]

    Steele A G, Meija J, Sanchez C A, Yang L, Wood B M, Sturgeon R E, Mester Z, Inglis A D 2012 Metrologia 49 L8

    [39]

    Sanchez C A, Wood B M, Green R G, Liard J O, Inglis D 2014 Metrologia 51 S5

    [40]

    Wood B M, Sanchez C A, Green R G, Liard J O 2017 Metrologia 54 399

    [41]

    Sutton C M 2009 Metrologia 46 467

    [42]

    Kim D, Woo B C, Lee K C, Choi K B, Kim J A, Kim J W, Kim J H 2014 Metrologia 51 S96

    [43]

    Ahmedov H 2016 Proceedings of the Conference on Precision Electromagnetic Measurement Ottawa, Canada, Jul 10-15, 2016

    [44]

    Ahmedov H, BabayigitAskin N, Korutlu B, Orhan R 2018 Metrologia 55 326

    [45]

    Zhang Z, He Q, Li Z, Han B, Lu Y, Lan J, Li C, Li S, Xu J, Wang N, Wang G, Gong H 2014 Metrologia 51 s25

    [46]

    Xu J, Zhang Z, Li Z 2016 Metrologia 53 86

    [47]

    Zhang Z, Lu Y, Hu P, Liu Y, Xu J, Bai Y, Zeng T, Wang G, You Q, Li C, Li S, Wang K, He Q, Tan J 2017 IEEE Trans. Instrum. Meas. 66 1329

    [48]

    Li Z, Zhang Z, Lu Y, Hu P, Liu Y, Xu J, Bai Y, Zeng T, Wang G, You Q, Wang D, Li S, He Q, Tan J 2017 Metrologia 54 763

    [49]

    Jones N 2012 Nature 481 14

    [50]

    Mohr P J, Newell D B, Taylor B N, Tiesinga E 2018 Metrologia 55 125

    [51]

    Newell D B, Cabiati F, Fischer J, Fujii K, Karshenboim S G, Margolis H S, de Mirandés E, Mohr P J, Nez F, Pachucki K, Quinn T J, Taylor B N, Wang M, Wood B M, Zhang Z 2018 Metrologia 55 L13

    [52]

    CCU Recomendation U1 (2017) On the possible redefinition of the kilogram, ampere, kelvin and mole in 2018, https://www.bipm.org/cc/CCU/Allowed/23/CCU_Final_Recommendation_U1_2017.pdf [2018-7-24]

    [53]

    Decision CIPM/106-10, https://www.bipm.org/utils/en/pdf/CIPM/CIPM2017-Decisions-EN.pdf [2018-7-24]

    [54]

    Li Z, Zhang Z, He Q, Fu Y, Zhao J, Han B, Li S, Lan J, Li C 2011 IEEE Trans. Instrum. Meas. 60 2292

    [55]

    Lan J, Zhang Z, Li Z, He Q, Fu Y, Li S, Han B, Zhao J, Lu Y 2012 IEEE Trans. Instrum. Meas. 61 2524

    [56]

    Li Z, Zhang Z, He Q, Han B, Lu Y, Xu J, Li S, Li C, Wang G, Zeng T, Bai Y 2015 IEEE Trans. Instrum. Meas. 64 1676

    [57]

    Zhang Z, Li Z, Han B 2015 IEEE Trans. Instrum. Meas. 64 1539

    [58]

    Wang G, Xu J, You Q 2017 Meas. Sci. Technol. 28 015004

    [59]

    Yang H, Lu Y, Hu P, Li Z, Zeng T, He Q 2014 Meas. Sci. Technol. 25 233

    [60]

    Bai Y, Hu P, Lu Y, Li Z, Zang Z, Tan J 2016 IEEE Trans. Instrum. Meas. 66 1

    [61]

    Zeng T, Lu Y, Liu Y, Yang H, Bai Y, Hu P, Li Z, Zhang Z, Tan J 2016 IEEE Trans. Instrum. Meas. 65 458

    [62]

    You Q, Xu J, Li Z, Li S 2017 IEEE Trans. Instrum. Meas. 66 1289

  • [1] 贾美美, 曹佳伟, 白明明. 新型忆阻耦合异质神经元的放电模式和预定义时间混沌同步. 物理学报, 2024, 73(17): 170502. doi: 10.7498/aps.73.20240872
    [2] 蔡荣根, 李理, 王少江. 哈勃常数危机. 物理学报, 2023, 72(23): 239801. doi: 10.7498/aps.72.20231270
    [3] 张静言, 窦鹏伟, 赵云驰, 张石磊, 刘佳强, 祁杰, 吕浩昌, 刘若洋, 于广华, 姜勇, 沈保根, 王守国. 霍尔天平材料的多场调控. 物理学报, 2021, 70(4): 048501. doi: 10.7498/aps.70.20201799
    [4] 王强, 曹则贤. 水溶液中结合水的定义与量化. 物理学报, 2019, 68(1): 015101. doi: 10.7498/aps.68.20181742
    [5] 张益军, 甘卓欣, 张瀚, 黄帆, 徐源, 冯琤. 超高真空系统中GaAlAs光电阴极的重新铯化研究. 物理学报, 2014, 63(17): 178502. doi: 10.7498/aps.63.178502
    [6] 马刚, 张鹏, 漆成莉, 徐娜, 董超华. 普朗克权重订正对风云卫星快速正演精度的改进. 物理学报, 2014, 63(17): 179503. doi: 10.7498/aps.63.179503
    [7] 陈季香, 羌建兵, 王清, 董闯. 以最大原子密度定义合金相中的第一近邻团簇. 物理学报, 2012, 61(4): 046102. doi: 10.7498/aps.61.046102
    [8] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [9] 林政, 刘旻. 具有立方晶系结构的多晶体材料的弹性常数——Y弹性常数. 物理学报, 2009, 58(6): 4096-4102. doi: 10.7498/aps.58.4096
    [10] 林政, 刘旻. 具有六方晶系结构的多晶体材料弹性常数——Y弹性常数. 物理学报, 2009, 58(12): 8511-8521. doi: 10.7498/aps.58.8511
    [11] 王建伟, 荣莉莉. 基于负荷局域择优重新分配原则的复杂网络上的相继故障. 物理学报, 2009, 58(6): 3714-3721. doi: 10.7498/aps.58.3714
    [12] 王 薇, 张 杰, 赵 刚. 普朗克谱分布的辐射场对束缚电子布居的影响. 物理学报, 2008, 57(3): 1759-1764. doi: 10.7498/aps.57.1759
    [13] 沈 韩, 许 华, 陈 敏, 李景德. 超高介电常数非铁电单晶. 物理学报, 2004, 53(5): 1529-1533. doi: 10.7498/aps.53.1529
    [14] 李传安. 黑洞的普朗克绝对熵公式. 物理学报, 2001, 50(5): 986-989. doi: 10.7498/aps.50.986
    [15] 赵 峥, 朱建阳. 能斯特定理与黑洞的普朗克绝对熵. 物理学报, 1999, 48(8): 1558-1564. doi: 10.7498/aps.48.1558
    [16] 徐文兰. 含颗粒涂层的等效光学常数. 物理学报, 1998, 47(9): 1555-1563. doi: 10.7498/aps.47.1555
    [17] 应阳君, 王光瑞, 陈式刚. 一种数值方法定义Hénon映射符号动力学的讨论. 物理学报, 1994, 43(8): 1234-1240. doi: 10.7498/aps.43.1234
    [18] 湛垦华, 谢大来, 汪培庄. 由Hanusse定理的完整化而导出一个新定理. 物理学报, 1981, 30(7): 989-991. doi: 10.7498/aps.30.989
    [19] 史隆培, 廖绍彬. 微波铁氧体的介电常数和磁导率的测量. 物理学报, 1974, 23(3): 61-72. doi: 10.7498/aps.23.61
    [20] 汪永江. 空位所引起的晶体弹性常数的改变. 物理学报, 1966, 22(2): 214-222. doi: 10.7498/aps.22.214
计量
  • 文章访问数:  7940
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-31
  • 修回日期:  2018-06-04
  • 刊出日期:  2019-08-20

/

返回文章
返回