搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拓扑优化设计的宽频吸波复合材料

莫漫漫 马武伟 庞永强 陈润华 张笑梅 柳兆堂 李想 郭万涛

引用本文:
Citation:

基于拓扑优化设计的宽频吸波复合材料

莫漫漫, 马武伟, 庞永强, 陈润华, 张笑梅, 柳兆堂, 李想, 郭万涛

Broadband absorbent materials based on topology optimization design

Mo Man-Man, Ma Wu-Wei, Pang Yong-Qiang, Chen Run-Hua, Zhang Xiao-Mei, Liu Zhao-Tang, Li Xiang, Guo Wan-Tao
PDF
导出引用
  • 本文基于拓扑优化方法设计并制备了一种宽频吸波复合材料,该吸波复合材料由高强玻璃纤维透波板、电阻损耗型超材料、聚氨酯泡沫和碳纤维反射板组成.仿真及测试结果表明,该吸波复合材料在2–18 GHz频段内的平板反射率均小于-12 dB.并且由于采用高强玻璃纤维及碳纤维复合材料作为面板层,聚氨酯泡沫作为芯材,因此该吸波复合材料不仅在较宽频带内对电磁波具有高的吸收率,同时还具有质量轻、耐高温、耐低温、耐湿热、抗腐蚀等特点,便于实现吸波与力学性能及耐环境性能的兼容,具有一定的工程应用价值.
    In this paper, we present a kind of broadband absorbent material. The broadband absorbent material is designed based on topology optimization and tested. The optimizing of metamaterials with a genetic algorithm has become one of the most effective methods of designing metamaterials in recent years. An integral system with interactive simulation of MATLAB and CST Microwave Studio is developed, and the main program of genetic algorithm is written in MATLAB; with simulation and computation in CST the metamaterial is optimized by a genetic algorithm with power of global optimization. Vacuum assistant resin infusion process is a new cost-effective and high-performance process. The proposed radar absorbent material possesses a sandwich structure, which consists of transparent composite skin panel, resistive metasurface, polyurethane foam and reflective composite skin panel. The transparent composite skin panel is low-dielectric-constant glass fiber reinforced composite, which has excellent physical properties and weather resistant property. The core material is composed of low density polyurethane foam and metamaterials, which can well meet the requirements for weight reduction and the invisibility. The reflective composite skin panel is a low-resistance carbon fiber reinforced composite, which prevents the electromagnetic waves from transmitting and also provides electrical boundary conditions for metamaterial. Simulation and test results indicate that the reflectivity of the radar absorbent material is less than-12 dB in a range of 2-18 GHz. Because of the symmetrical structure design of the resistance film, the radar absorbent material is polarization-independent. We preliminarily produce a batch of radar absorbent materials and test their various performances. Such a radar absorbent material has a strong absorption and other properties such as light quality, high temperature resistance, low temperature resistance, humidity resistance and corrosion resistance. The radar absorbent material which has been widely used in the engineering field is easy to achieve the compatibility of absorption, mechanical properties and environmental performance. Compared with previous design method, the topology optimization design is simple in programming operation, good in generality, and short in design periode. The radar absorbent materials owns strong application value.
      通信作者: 莫漫漫, mmm725@126.com
      Corresponding author: Mo Man-Man, mmm725@126.com
    [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [3]

    Schurig D, Mock J J, Justice B J 2006 Science 314 977

    [4]

    Yan H H, Cao X Y, Gao J, Liu T, Li S J, Zhao Y, Yuan Z D, Zhang H 2013 Acta Phys. Sin. 62 214101 (in Chinese)[杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩 2013 物理学报 62 214101]

    [5]

    Zhang L, Liu S, Cui T J 2017 Chin. Opt. 10 1 (in Chinese)[张磊, 刘硕, 崔铁军 2017 中国光学 10 1]

    [6]

    Yan X, Liang L J, Yang J, Liu W W, Ding X, Xu D G, Zhang Y T, Cui T J, Yao J Q 2015 Opt. Express 23 29128

    [7]

    Liu J F, Liu S, Fu X J, Cui T J 2018 J. Radars 7 46 (in Chinese)[刘峻峰, 刘硕, 傅晓建, 崔铁军 2018 雷达学报 7 46]

    [8]

    Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511

    [9]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [10]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese)[李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 物理学报 63 084103]

    [11]

    Li Y F, Wang J F, Zhang J Q, Qu S B, Pang Y Q, Zheng L, Yan M B, Xu Z, Zhang A X 2014 Prog. Electromagn. Res. M 40 9

    [12]

    Zhu B, Wang Z B, Yu Z Z, Zhang Q, Zhao J M, Feng Y J, Jing T 2009 Chin. Phys. Lett. 26 114102

    [13]

    Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propag. 62 945

    [14]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [15]

    Chen H Y, Hou X Y, Deng L J 2009 IEEE Antennas Wirel. Propag. Lett. 8 1231

    [16]

    Xu Y Q, Zhou P H, Zhang H B, Chen L, Deng L J 2011 J. Appl. Phys. 110 044102

    [17]

    Zhang L B, Zhou P H, Chen H Y, Lu H P, Xie H Y, Zhang L, Li E, Xie J L, Deng L J 2016 Sci. Rep. 6 33826

    [18]

    Cui Y X, Feng K H, Xu J, Ma H J, Jin Y, He S L, Fang N X 2012 Nano Lett. 12 1443

    [19]

    Cui Y X, He Y R, Jin Y, Ding F, Yang L, Ye Y Q, Zhong S M, Lin Y Y, He S L 2014 Laser Photon. Rev. 8 495

    [20]

    Zhong S M, He S L 2013 Sci. Rep. 3 2083

    [21]

    Zhong S M, Ma Y G, He S L 2014 Appl. Phys. Lett. 105 023504

    [22]

    Zhu J F, Ma Z F, Sun W J, Ding F, He Q, Zhou L, Ma Y G 2014 Appl. Phys. Lett. 105 021102

    [23]

    Ding F, Jin Y, Li B R, Cheng H, Mo L, He S L 2014 Laser Photonics Rev. 8 946

    [24]

    Cheng Y Z, Nie Y, Gong R Z, Zheng D H, Fan Y N, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134101 (in Chinese)[程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜 2012 物理学报 61 134101]

    [25]

    Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102 (in Chinese)[程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 物理学报 61 134102]

  • [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [3]

    Schurig D, Mock J J, Justice B J 2006 Science 314 977

    [4]

    Yan H H, Cao X Y, Gao J, Liu T, Li S J, Zhao Y, Yuan Z D, Zhang H 2013 Acta Phys. Sin. 62 214101 (in Chinese)[杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩 2013 物理学报 62 214101]

    [5]

    Zhang L, Liu S, Cui T J 2017 Chin. Opt. 10 1 (in Chinese)[张磊, 刘硕, 崔铁军 2017 中国光学 10 1]

    [6]

    Yan X, Liang L J, Yang J, Liu W W, Ding X, Xu D G, Zhang Y T, Cui T J, Yao J Q 2015 Opt. Express 23 29128

    [7]

    Liu J F, Liu S, Fu X J, Cui T J 2018 J. Radars 7 46 (in Chinese)[刘峻峰, 刘硕, 傅晓建, 崔铁军 2018 雷达学报 7 46]

    [8]

    Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511

    [9]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [10]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese)[李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 物理学报 63 084103]

    [11]

    Li Y F, Wang J F, Zhang J Q, Qu S B, Pang Y Q, Zheng L, Yan M B, Xu Z, Zhang A X 2014 Prog. Electromagn. Res. M 40 9

    [12]

    Zhu B, Wang Z B, Yu Z Z, Zhang Q, Zhao J M, Feng Y J, Jing T 2009 Chin. Phys. Lett. 26 114102

    [13]

    Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propag. 62 945

    [14]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [15]

    Chen H Y, Hou X Y, Deng L J 2009 IEEE Antennas Wirel. Propag. Lett. 8 1231

    [16]

    Xu Y Q, Zhou P H, Zhang H B, Chen L, Deng L J 2011 J. Appl. Phys. 110 044102

    [17]

    Zhang L B, Zhou P H, Chen H Y, Lu H P, Xie H Y, Zhang L, Li E, Xie J L, Deng L J 2016 Sci. Rep. 6 33826

    [18]

    Cui Y X, Feng K H, Xu J, Ma H J, Jin Y, He S L, Fang N X 2012 Nano Lett. 12 1443

    [19]

    Cui Y X, He Y R, Jin Y, Ding F, Yang L, Ye Y Q, Zhong S M, Lin Y Y, He S L 2014 Laser Photon. Rev. 8 495

    [20]

    Zhong S M, He S L 2013 Sci. Rep. 3 2083

    [21]

    Zhong S M, Ma Y G, He S L 2014 Appl. Phys. Lett. 105 023504

    [22]

    Zhu J F, Ma Z F, Sun W J, Ding F, He Q, Zhou L, Ma Y G 2014 Appl. Phys. Lett. 105 021102

    [23]

    Ding F, Jin Y, Li B R, Cheng H, Mo L, He S L 2014 Laser Photonics Rev. 8 946

    [24]

    Cheng Y Z, Nie Y, Gong R Z, Zheng D H, Fan Y N, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134101 (in Chinese)[程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜 2012 物理学报 61 134101]

    [25]

    Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102 (in Chinese)[程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 物理学报 61 134102]

  • [1] 韩同伟, 李选政, 赵泽若, 顾叶彤, 马川, 张小燕. 不同荷载作用下二维硼烯的力学性能及变形破坏机理. 物理学报, 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [2] 何晓珣, 李炳生, 刘瑞, 张桐民, 曹兴忠, 陈黎明, 徐帅. Ti含量对TiB2-SiC-Ti材料制备和性能的影响. 物理学报, 2022, 71(19): 192801. doi: 10.7498/aps.71.20220530
    [3] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [4] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [5] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] 邱克鹏, 骆越, 张卫红. 新型手性电磁超材料非对称传输性能设计分析. 物理学报, 2020, 69(21): 214101. doi: 10.7498/aps.69.20200728
    [7] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [8] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 物理学报, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [9] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [10] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟. 物理学报, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [11] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [12] 陈明东, 揭晓华, 张海燕. 碳纳米管复合吸波涂层微波吸收性能的模拟计算. 物理学报, 2014, 63(6): 066103. doi: 10.7498/aps.63.066103
    [13] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [14] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [15] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [16] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [17] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [18] 华绍春, 王汉功, 汪刘应, 刘顾, 赵瑞星, 姚建勋. 微弧等离子喷涂碳纳米管/纳米Al2O3-TiO2复合涂层的吸波性能研究. 物理学报, 2009, 58(9): 6534-6541. doi: 10.7498/aps.58.6534
    [19] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [20] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
计量
  • 文章访问数:  7716
  • PDF下载量:  247
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-14
  • 修回日期:  2018-08-28
  • 刊出日期:  2018-11-05

/

返回文章
返回