-
本文主要从理论和实验上研究超冷铯(60D5/2)2 Rydberg分子的双色光缔合光谱.数值计算了铯60D5/2 Rydberg原子对态的长程电多极相互作用和(60D5/2)2 Rydberg分子的绝热势能曲线,获得了(60D5/2)2 Rydberg分子的势阱深度和平衡间距.实验上利用双色光缔合超冷铯原子的方法制备了(60D5/2)2 Rydberg分子.其中,第一色激光(pulse-A)双光子共振激发种子Rydberg原子A;第二色激光(pulse-B,失谐于分子的束缚能)共振激发第二个Rydberg原子B,原子A与B由分子势阱束缚形成超冷(60D5/2)2 Rydberg分子.由脉冲场电离探测技术获得Rydberg分子的光缔合光谱,测量的Rydberg分子的势阱深度与理论计算结果相一致.
-
关键词:
- 超冷Rydberg分子 /
- 双色光缔合 /
- 绝热势能曲线
The long-range multipole interactions between ultra-cold Rydberg atoms form adiabatic potentials, one of which shows a binding potential that can be used to bind Rydberg-Rydberg molecules. Rydberg-atom molecule, known as macrodimer due to its larger size (~μm), has the properties of the abundant vibrational energy levels and large electric dipole moment and so on. Compared with Rydberg atom, the Rydberg molecule, including Rydberg-ground molecule and Rydberg-Rydberg molecule, is susceptible to manipulate by an external field and possesses potential applications in the weak-signal detection, the quantum gas correlation measurement and the vacuum fluctuation and so on.
In this paper, we investigate a (60D5/2)2 Rydberg macrodimer theoretically and experimentally. In the calculation, we take into account the multipole interaction of a Rydberg-atom pair, including dipole-dipole, dipole-quadrupole, dipole-octupole and quadrupole-quadrupole interaction and so on. The adiabatic potential of 60D5/2 Rydberg-atom pair is obtained by diagonalizing the interaction Hamiltonian on a grid of internuclear separations, R. The potential depth and binding length of the Rydberg molecular potential well are obtained. In experiment, we prepare the ultra-cold Cs (60D5/2)2 Rydberg molecules by a two-color photoassociation method in a cesium ultracold atom trap. The first-color (pulse-A) resonantly excites a seed Rydberg atom A, and the second color (pulse-B) is detuned and resonantly excites the second Rydberg atom B near to the atom A. Both pulse-A and pulse-B are two-photon excitations (852 nm + 510 nm), between which their 852-nm lasers have the same frequency, whereas the 510-nm laser frequency of the pulse-A is set to be resonant with the atomic transition and the frequency of the pulse-B is detuned by using a double-passed acousto-optic modulator. When the pulse-B is detuned to the molecular binding energy, atom-A and-B are bonded, forming an ultra-cold Cs (60D5/2)2 Rydberg molecule. The two-color photoassociation spectra of Rydberg-Rydberg molecules are detected by the field ionization of Rydberg atoms and molecules with a ramped electric field. Molecular spectra are compared with calculated adiabatic molecular potentials, which yields the binding energy and equilibrium internuclear distance. The two-color photoassociation method used in this work has a doubly resonant character that results in the enhanced excitation rate.-
Keywords:
- ultra-cold Rydberg-Rydberg molecule /
- two-color photoassociation /
- oindent adiabatic potential
[1] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp11-47
[2] Vogt T, Viteau M, Zhao J, Chotia A, Comparat D, Pillet P 2006 Phys. Rev. Lett. 97 083003
[3] Gurian J H, Cheinet P, Huillery P, Fioretti A, Zhao J, Gould P L, Comparat D, Pillet P 2012 Phys. Rev. Lett. 108 023005
[4] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819
[5] Jiao Y, Han X, Yang Z, Li J, Raithel G, Zhao J, Jia S 2016 Phys. Rev. A 94 023832
[6] Jiao Y, Hao L, Han X, Bai S, Raithel G, Zhao J, Jia S 2017 Phys. Rev. Appl. 8 014028
[7] Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Côté R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 063001
[8] Singer K, Reetz-Lamour M, Amthor T, Marcassa L G, Weidemüller M 2004 Phys. Rev. Lett. 93 163001
[9] Lukin M D, Fleischhauer M, Côté R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901
[10] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503
[11] Peyronel T, Firstenberg O, Liang Q, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57
[12] Boisseau C, Simbotin I, Côté R 2002 Phys. Rev. Lett. 88 133004
[13] Overstreet K R, Schwettmann A, Tallant J, Booth D, Shaffer J P 2009 Nat. Phys. 5 581
[14] Deiglmayr J, Saßmannshausen H, Pillet P, Merkt F 2014 Phys. Rev. Lett. 113 193001
[15] Saßmannshausen H, Deiglmayr J 2016 Phys. Rev. Lett. 117 083401
[16] Greene C H, Dickinson A S, Sadeghpour H R 2000 Phys. Rev. Lett. 85 2458
[17] Hamilton E L, Greene C H, Sadeghpour H R 2002 J. Phys. B 35 L199
[18] Khuskivadze A A, Chibisov M I, Fabrikant I I 2002 Phys. Rev. A 66 042709
[19] Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Löw R, Pfau T 2009 Nature 458 1005
[20] Bendkowsky V, Butscher B, Nipper J, Balewski J B, Shaffer J P, Löw R, Pfau T, Li W, Stanojevic J, Pohl T, Rost J M 2010 Phys. Rev. Lett. 105 163201
[21] Bellos M A, Carollo R, Banerjee J, Eyler E E, Gould P L, Stwalley W C 2013 Phys. Rev. Lett. 111 053001
[22] Anderson D A, Miller S A, Raithel G 2014 Phys. Rev. Lett. 112 163201
[23] Krupp A T, Gaj A, Balewski J B, Ilzhöfer P, Hofferberth S, Löw R, Pfau T, Kurz M, Schmelcher P 2014 Phys. Rev. Lett. 112 143008
[24] Stecker M, Schefzyk H, Fortágh J, Günther A 2017 New J. Phys. 19 043020
[25] Ford L H, Roman T A 2011 Ann. Phys. 326 2294
[26] Menezes G, Svaiter N F 2015 Phys. Rev. A 92 062131
[27] Born M, Oppenheimer J R 1927 Ann. Phys. 84 457
[28] Le Roy R J 1974 Can. J. Phys. 52 246
[29] Schwettmann A, Crawford J, Overstreet K R, Shaffer J P 2006 Phys. Rev. A 74 020701
[30] Han X, Bai S, Jiao Y, Hao L, Xue Y, Zhao J, Jia S, Raithel G 2018 Phys. Rev. A 97 031403
[31] Deiglmayr J 2016 Phys. Scr. 91 104007
[32] Han X, Bai S, Jiao Y, Raithel G, Zhao J, Jia S 2018 arXiv:1806.04043ν1 [physics.atom-ph]
[33] Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141
[34] Jiao Y, Li J, Wang L, Zhang H, Zhang L, Zhao J, Jia S 2016 Chin. Phys. B 25 053201
-
[1] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp11-47
[2] Vogt T, Viteau M, Zhao J, Chotia A, Comparat D, Pillet P 2006 Phys. Rev. Lett. 97 083003
[3] Gurian J H, Cheinet P, Huillery P, Fioretti A, Zhao J, Gould P L, Comparat D, Pillet P 2012 Phys. Rev. Lett. 108 023005
[4] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819
[5] Jiao Y, Han X, Yang Z, Li J, Raithel G, Zhao J, Jia S 2016 Phys. Rev. A 94 023832
[6] Jiao Y, Hao L, Han X, Bai S, Raithel G, Zhao J, Jia S 2017 Phys. Rev. Appl. 8 014028
[7] Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Côté R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 063001
[8] Singer K, Reetz-Lamour M, Amthor T, Marcassa L G, Weidemüller M 2004 Phys. Rev. Lett. 93 163001
[9] Lukin M D, Fleischhauer M, Côté R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901
[10] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503
[11] Peyronel T, Firstenberg O, Liang Q, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57
[12] Boisseau C, Simbotin I, Côté R 2002 Phys. Rev. Lett. 88 133004
[13] Overstreet K R, Schwettmann A, Tallant J, Booth D, Shaffer J P 2009 Nat. Phys. 5 581
[14] Deiglmayr J, Saßmannshausen H, Pillet P, Merkt F 2014 Phys. Rev. Lett. 113 193001
[15] Saßmannshausen H, Deiglmayr J 2016 Phys. Rev. Lett. 117 083401
[16] Greene C H, Dickinson A S, Sadeghpour H R 2000 Phys. Rev. Lett. 85 2458
[17] Hamilton E L, Greene C H, Sadeghpour H R 2002 J. Phys. B 35 L199
[18] Khuskivadze A A, Chibisov M I, Fabrikant I I 2002 Phys. Rev. A 66 042709
[19] Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Löw R, Pfau T 2009 Nature 458 1005
[20] Bendkowsky V, Butscher B, Nipper J, Balewski J B, Shaffer J P, Löw R, Pfau T, Li W, Stanojevic J, Pohl T, Rost J M 2010 Phys. Rev. Lett. 105 163201
[21] Bellos M A, Carollo R, Banerjee J, Eyler E E, Gould P L, Stwalley W C 2013 Phys. Rev. Lett. 111 053001
[22] Anderson D A, Miller S A, Raithel G 2014 Phys. Rev. Lett. 112 163201
[23] Krupp A T, Gaj A, Balewski J B, Ilzhöfer P, Hofferberth S, Löw R, Pfau T, Kurz M, Schmelcher P 2014 Phys. Rev. Lett. 112 143008
[24] Stecker M, Schefzyk H, Fortágh J, Günther A 2017 New J. Phys. 19 043020
[25] Ford L H, Roman T A 2011 Ann. Phys. 326 2294
[26] Menezes G, Svaiter N F 2015 Phys. Rev. A 92 062131
[27] Born M, Oppenheimer J R 1927 Ann. Phys. 84 457
[28] Le Roy R J 1974 Can. J. Phys. 52 246
[29] Schwettmann A, Crawford J, Overstreet K R, Shaffer J P 2006 Phys. Rev. A 74 020701
[30] Han X, Bai S, Jiao Y, Hao L, Xue Y, Zhao J, Jia S, Raithel G 2018 Phys. Rev. A 97 031403
[31] Deiglmayr J 2016 Phys. Scr. 91 104007
[32] Han X, Bai S, Jiao Y, Raithel G, Zhao J, Jia S 2018 arXiv:1806.04043ν1 [physics.atom-ph]
[33] Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141
[34] Jiao Y, Li J, Wang L, Zhang H, Zhang L, Zhao J, Jia S 2016 Chin. Phys. B 25 053201
计量
- 文章访问数: 5217
- PDF下载量: 46
- 被引次数: 0