搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超冷铯(60D5/2)2 Rydberg分子的双色光缔合光谱

白景旭 韩小萱 白素英 焦月春 赵建明 贾锁堂

引用本文:
Citation:

超冷铯(60D5/2)2 Rydberg分子的双色光缔合光谱

白景旭, 韩小萱, 白素英, 焦月春, 赵建明, 贾锁堂

Two-color photoassociation spectra of ultra-cold Cs (60D5/2)2 Rydberg molecule

Bai Jing-Xu, Han Xiao-Xuan, Bai Su-Ying, Jiao Yue-Chun, Zhao Jian-Ming, Jia Suo-Tang
PDF
导出引用
  • 本文主要从理论和实验上研究超冷铯(60D5/22 Rydberg分子的双色光缔合光谱.数值计算了铯60D5/2 Rydberg原子对态的长程电多极相互作用和(60D5/22 Rydberg分子的绝热势能曲线,获得了(60D5/22 Rydberg分子的势阱深度和平衡间距.实验上利用双色光缔合超冷铯原子的方法制备了(60D5/22 Rydberg分子.其中,第一色激光(pulse-A)双光子共振激发种子Rydberg原子A;第二色激光(pulse-B,失谐于分子的束缚能)共振激发第二个Rydberg原子B,原子A与B由分子势阱束缚形成超冷(60D5/22 Rydberg分子.由脉冲场电离探测技术获得Rydberg分子的光缔合光谱,测量的Rydberg分子的势阱深度与理论计算结果相一致.
    The long-range multipole interactions between ultra-cold Rydberg atoms form adiabatic potentials, one of which shows a binding potential that can be used to bind Rydberg-Rydberg molecules. Rydberg-atom molecule, known as macrodimer due to its larger size (~μm), has the properties of the abundant vibrational energy levels and large electric dipole moment and so on. Compared with Rydberg atom, the Rydberg molecule, including Rydberg-ground molecule and Rydberg-Rydberg molecule, is susceptible to manipulate by an external field and possesses potential applications in the weak-signal detection, the quantum gas correlation measurement and the vacuum fluctuation and so on.
    In this paper, we investigate a (60D5/2)2 Rydberg macrodimer theoretically and experimentally. In the calculation, we take into account the multipole interaction of a Rydberg-atom pair, including dipole-dipole, dipole-quadrupole, dipole-octupole and quadrupole-quadrupole interaction and so on. The adiabatic potential of 60D5/2 Rydberg-atom pair is obtained by diagonalizing the interaction Hamiltonian on a grid of internuclear separations, R. The potential depth and binding length of the Rydberg molecular potential well are obtained. In experiment, we prepare the ultra-cold Cs (60D5/2)2 Rydberg molecules by a two-color photoassociation method in a cesium ultracold atom trap. The first-color (pulse-A) resonantly excites a seed Rydberg atom A, and the second color (pulse-B) is detuned and resonantly excites the second Rydberg atom B near to the atom A. Both pulse-A and pulse-B are two-photon excitations (852 nm + 510 nm), between which their 852-nm lasers have the same frequency, whereas the 510-nm laser frequency of the pulse-A is set to be resonant with the atomic transition and the frequency of the pulse-B is detuned by using a double-passed acousto-optic modulator. When the pulse-B is detuned to the molecular binding energy, atom-A and-B are bonded, forming an ultra-cold Cs (60D5/2)2 Rydberg molecule. The two-color photoassociation spectra of Rydberg-Rydberg molecules are detected by the field ionization of Rydberg atoms and molecules with a ramped electric field. Molecular spectra are compared with calculated adiabatic molecular potentials, which yields the binding energy and equilibrium internuclear distance. The two-color photoassociation method used in this work has a doubly resonant character that results in the enhanced excitation rate.
    • 基金项目: 国家重点研发计划(批准号:2017YFA0304203)、国家自然科学基金(批准号:61475090,61675123,61775124,11804202)、国家自然科学基金重点项目(批准号:11434007,61835007)、长江学者和创新团队发展计划(编号:RTIRT_17R70)和山西省"1331工程"重点学科建设计划资助的课题.
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the National Nature Science Foundation of China (Grant Nos. 61475090, 61675123, 61775124, 11804202), the Key Program of the National Natural Science Foundation of China (Grant No. 11434007, 61835007), the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_17R70), and the "1331 Project" of Shanxi Province, China.
    [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp11-47

    [2]

    Vogt T, Viteau M, Zhao J, Chotia A, Comparat D, Pillet P 2006 Phys. Rev. Lett. 97 083003

    [3]

    Gurian J H, Cheinet P, Huillery P, Fioretti A, Zhao J, Gould P L, Comparat D, Pillet P 2012 Phys. Rev. Lett. 108 023005

    [4]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [5]

    Jiao Y, Han X, Yang Z, Li J, Raithel G, Zhao J, Jia S 2016 Phys. Rev. A 94 023832

    [6]

    Jiao Y, Hao L, Han X, Bai S, Raithel G, Zhao J, Jia S 2017 Phys. Rev. Appl. 8 014028

    [7]

    Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Côté R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 063001

    [8]

    Singer K, Reetz-Lamour M, Amthor T, Marcassa L G, Weidemüller M 2004 Phys. Rev. Lett. 93 163001

    [9]

    Lukin M D, Fleischhauer M, Côté R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901

    [10]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [11]

    Peyronel T, Firstenberg O, Liang Q, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57

    [12]

    Boisseau C, Simbotin I, Côté R 2002 Phys. Rev. Lett. 88 133004

    [13]

    Overstreet K R, Schwettmann A, Tallant J, Booth D, Shaffer J P 2009 Nat. Phys. 5 581

    [14]

    Deiglmayr J, Saßmannshausen H, Pillet P, Merkt F 2014 Phys. Rev. Lett. 113 193001

    [15]

    Saßmannshausen H, Deiglmayr J 2016 Phys. Rev. Lett. 117 083401

    [16]

    Greene C H, Dickinson A S, Sadeghpour H R 2000 Phys. Rev. Lett. 85 2458

    [17]

    Hamilton E L, Greene C H, Sadeghpour H R 2002 J. Phys. B 35 L199

    [18]

    Khuskivadze A A, Chibisov M I, Fabrikant I I 2002 Phys. Rev. A 66 042709

    [19]

    Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Löw R, Pfau T 2009 Nature 458 1005

    [20]

    Bendkowsky V, Butscher B, Nipper J, Balewski J B, Shaffer J P, Löw R, Pfau T, Li W, Stanojevic J, Pohl T, Rost J M 2010 Phys. Rev. Lett. 105 163201

    [21]

    Bellos M A, Carollo R, Banerjee J, Eyler E E, Gould P L, Stwalley W C 2013 Phys. Rev. Lett. 111 053001

    [22]

    Anderson D A, Miller S A, Raithel G 2014 Phys. Rev. Lett. 112 163201

    [23]

    Krupp A T, Gaj A, Balewski J B, Ilzhöfer P, Hofferberth S, Löw R, Pfau T, Kurz M, Schmelcher P 2014 Phys. Rev. Lett. 112 143008

    [24]

    Stecker M, Schefzyk H, Fortágh J, Günther A 2017 New J. Phys. 19 043020

    [25]

    Ford L H, Roman T A 2011 Ann. Phys. 326 2294

    [26]

    Menezes G, Svaiter N F 2015 Phys. Rev. A 92 062131

    [27]

    Born M, Oppenheimer J R 1927 Ann. Phys. 84 457

    [28]

    Le Roy R J 1974 Can. J. Phys. 52 246

    [29]

    Schwettmann A, Crawford J, Overstreet K R, Shaffer J P 2006 Phys. Rev. A 74 020701

    [30]

    Han X, Bai S, Jiao Y, Hao L, Xue Y, Zhao J, Jia S, Raithel G 2018 Phys. Rev. A 97 031403

    [31]

    Deiglmayr J 2016 Phys. Scr. 91 104007

    [32]

    Han X, Bai S, Jiao Y, Raithel G, Zhao J, Jia S 2018 arXiv:1806.04043ν1 [physics.atom-ph]

    [33]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141

    [34]

    Jiao Y, Li J, Wang L, Zhang H, Zhang L, Zhao J, Jia S 2016 Chin. Phys. B 25 053201

  • [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp11-47

    [2]

    Vogt T, Viteau M, Zhao J, Chotia A, Comparat D, Pillet P 2006 Phys. Rev. Lett. 97 083003

    [3]

    Gurian J H, Cheinet P, Huillery P, Fioretti A, Zhao J, Gould P L, Comparat D, Pillet P 2012 Phys. Rev. Lett. 108 023005

    [4]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [5]

    Jiao Y, Han X, Yang Z, Li J, Raithel G, Zhao J, Jia S 2016 Phys. Rev. A 94 023832

    [6]

    Jiao Y, Hao L, Han X, Bai S, Raithel G, Zhao J, Jia S 2017 Phys. Rev. Appl. 8 014028

    [7]

    Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Côté R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 063001

    [8]

    Singer K, Reetz-Lamour M, Amthor T, Marcassa L G, Weidemüller M 2004 Phys. Rev. Lett. 93 163001

    [9]

    Lukin M D, Fleischhauer M, Côté R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901

    [10]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [11]

    Peyronel T, Firstenberg O, Liang Q, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57

    [12]

    Boisseau C, Simbotin I, Côté R 2002 Phys. Rev. Lett. 88 133004

    [13]

    Overstreet K R, Schwettmann A, Tallant J, Booth D, Shaffer J P 2009 Nat. Phys. 5 581

    [14]

    Deiglmayr J, Saßmannshausen H, Pillet P, Merkt F 2014 Phys. Rev. Lett. 113 193001

    [15]

    Saßmannshausen H, Deiglmayr J 2016 Phys. Rev. Lett. 117 083401

    [16]

    Greene C H, Dickinson A S, Sadeghpour H R 2000 Phys. Rev. Lett. 85 2458

    [17]

    Hamilton E L, Greene C H, Sadeghpour H R 2002 J. Phys. B 35 L199

    [18]

    Khuskivadze A A, Chibisov M I, Fabrikant I I 2002 Phys. Rev. A 66 042709

    [19]

    Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Löw R, Pfau T 2009 Nature 458 1005

    [20]

    Bendkowsky V, Butscher B, Nipper J, Balewski J B, Shaffer J P, Löw R, Pfau T, Li W, Stanojevic J, Pohl T, Rost J M 2010 Phys. Rev. Lett. 105 163201

    [21]

    Bellos M A, Carollo R, Banerjee J, Eyler E E, Gould P L, Stwalley W C 2013 Phys. Rev. Lett. 111 053001

    [22]

    Anderson D A, Miller S A, Raithel G 2014 Phys. Rev. Lett. 112 163201

    [23]

    Krupp A T, Gaj A, Balewski J B, Ilzhöfer P, Hofferberth S, Löw R, Pfau T, Kurz M, Schmelcher P 2014 Phys. Rev. Lett. 112 143008

    [24]

    Stecker M, Schefzyk H, Fortágh J, Günther A 2017 New J. Phys. 19 043020

    [25]

    Ford L H, Roman T A 2011 Ann. Phys. 326 2294

    [26]

    Menezes G, Svaiter N F 2015 Phys. Rev. A 92 062131

    [27]

    Born M, Oppenheimer J R 1927 Ann. Phys. 84 457

    [28]

    Le Roy R J 1974 Can. J. Phys. 52 246

    [29]

    Schwettmann A, Crawford J, Overstreet K R, Shaffer J P 2006 Phys. Rev. A 74 020701

    [30]

    Han X, Bai S, Jiao Y, Hao L, Xue Y, Zhao J, Jia S, Raithel G 2018 Phys. Rev. A 97 031403

    [31]

    Deiglmayr J 2016 Phys. Scr. 91 104007

    [32]

    Han X, Bai S, Jiao Y, Raithel G, Zhao J, Jia S 2018 arXiv:1806.04043ν1 [physics.atom-ph]

    [33]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141

    [34]

    Jiao Y, Li J, Wang L, Zhang H, Zhang L, Zhao J, Jia S 2016 Chin. Phys. B 25 053201

  • [1] 焦月春, 白景旭, 宋蓉, 韩小萱, 赵建明. 超冷(36D5/2+6S1/2)里德伯分子的制备及其电偶极矩的测量. 物理学报, 2023, 72(3): 033202. doi: 10.7498/aps.72.20221865
    [2] 白素英, 韩小萱, 郝丽萍, 焦月春, 赵建明. 铯31D5/2+6S1/2(F = 4)长程里德伯分子的光缔合光谱. 物理学报, 2023, 72(14): 143201. doi: 10.7498/aps.72.20230520
    [3] 白素英, 白景旭, 韩小萱, 焦月春, 赵建明. 超冷长程Rydberg-基态分子. 物理学报, 2021, 70(12): 123201. doi: 10.7498/aps.70.20202229
    [4] 鹿博, 王大军. 超冷极性分子. 物理学报, 2019, 68(4): 043301. doi: 10.7498/aps.68.20182274
    [5] 秦燕, 栗生长. 基于方波脉冲外场的超冷原子-分子绝热转化. 物理学报, 2018, 67(20): 203701. doi: 10.7498/aps.67.20180908
    [6] 李晨曦, 郭迎春, 王兵兵. O2分子B3u-态势能曲线的从头计算. 物理学报, 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [7] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质. 物理学报, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [8] 马杰, 王晓峰, 辛统钰, 刘文良, 李玉清, 武寄洲, 肖连团, 贾锁堂. 超冷铯分子0u+(6P3/2)长程态的高灵敏光缔合光谱研究. 物理学报, 2015, 64(15): 153303. doi: 10.7498/aps.64.153303
    [9] 胡晨阳, 刘文良, 徐润东, 武寄洲, 马杰, 肖连团, 贾锁堂. 利用双光缔合光谱技术直接测量超冷铯分子0u+(6S1/2+6P1/2)长程态的转动常数的实验研究. 物理学报, 2015, 64(14): 143302. doi: 10.7498/aps.64.143302
    [10] 韩小萱, 赵建明, 李昌勇, 贾锁堂. 长程铯里德堡分子的势能曲线. 物理学报, 2015, 64(13): 133202. doi: 10.7498/aps.64.133202
    [11] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 物理学报, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [12] 王文宝, 于坤, 张晓美, 刘玉芳. 从头计算研究BP分子的势能曲线和光谱性质. 物理学报, 2014, 63(7): 073302. doi: 10.7498/aps.63.073302
    [13] 赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂. 光缔合制备超冷铯分子的温度测量. 物理学报, 2014, 63(19): 193701. doi: 10.7498/aps.63.193701
    [14] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级. 物理学报, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [15] 王勇, 张好, 陈杰, 王丽梅, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷nS Rydberg原子的态转移. 物理学报, 2013, 62(9): 093201. doi: 10.7498/aps.62.093201
    [16] 李冠强, 彭娉, 曹振洲, 薛具奎. 超冷原子向异核四聚物分子A3B的绝热转化. 物理学报, 2012, 61(9): 090301. doi: 10.7498/aps.61.090301
    [17] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量. 物理学报, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [18] 鲁光辉, 孙卫国, 冯 灏. 氢化物双原子分子势能曲线的能量自洽法研究. 物理学报, 2004, 53(6): 1753-1758. doi: 10.7498/aps.53.1753
    [19] 李新喜, 孙卫国, 冯 灏. 用能量自洽法研究异核双原子分子的势能曲线. 物理学报, 2003, 52(2): 307-311. doi: 10.7498/aps.52.307
    [20] 文 静, 孙卫国, 冯 灏. 用能量自洽法研究碱金属双原子分子的势能曲线. 物理学报, 2000, 49(12): 2352-2356. doi: 10.7498/aps.49.2352
计量
  • 文章访问数:  5217
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-21
  • 修回日期:  2018-10-21
  • 刊出日期:  2018-12-05

/

返回文章
返回