搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双程放大的毛细管放电69.8 nm激光增益特性

刘涛 赵永蓬 崔怀愈 刘晓琳

引用本文:
Citation:

基于双程放大的毛细管放电69.8 nm激光增益特性

刘涛, 赵永蓬, 崔怀愈, 刘晓琳

Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge based on double-pass amplification

Liu Tao, Zhao Yong-Peng, Cui Huai-Yu, Liu Xiao-Lin
PDF
HTML
导出引用
  • 建立了类氖氩C线69.8 nm激光的双程放大实验后反射腔结构, 利用45 cm长毛细管作为放电负载得到了其双程放大输出. 在相同初始实验条件下, 分别测量了单程放大输出与双程放大输出的激光脉冲光强、脉冲宽度以及激光束散角. 通过对比单程与双程输出实验结果, 利用双程放大激光光强的计算公式, 分析得到了增益持续时间大于4 ns, 以及增益在毛细管径向上的分布特点. 以上结果为建立谐振腔进行毛细管放电类氖氩激光的多程放大实验奠定了基础.
    In this paper, a double-pass amplification experiment of a Ne-like Ar C line 69.8 nm laser is established. The 45-cmlong capillary is used as the discharge load to obtain a double-pass amplification output of a Ne-like Ar C line 69.8 nm laser. Under the same initial experimental conditions that the initial pressure is 15.4 Pa and the main pulse current amplitude is 13.5 kA, the laser pulse intensity and the full width at half maximum (FWHM) of the laser pulse of the single-pass amplification output and the double-pass amplification output are measured by a vacuum X-ray diode (XRD) behind a vacuum ultraviolet (VUV) monochromator (Acton VSN-515) which is used to disperse the extreme ultraviolet (EUV) emission. And then the laser beam divergence of single-pass amplification output and double-pass amplification output are also measured by a space-resolving flat-field EUV spectrograph combined with an EUV CCD (Andor Newton DO920P-BN). The amplitude of the double-pass amplification laser output is 9 times larger than that of single-pass amplification output, and the FWHM of the double-pass amplification laser pulse is nearly 2.4 ns. While the laser beam divergence angle of the double-pass amplification output is 6.6 times wider than that of single-pass amplification output. By comparing the single-pass amplification and double-pass amplification output experimental results, the gain duration of the gain medium in the double-pass amplification and the radial distribution characteristics of the gain medium are analyzed by using the calculation formula of the double-pass amplification laser intensity. The gain duration is more than 4 ns, during this time the gain coefficient decreases at 1.6 ns. And the gain coefficient is the smallest at 2.8 ns, meanwhile the intensity of the single-pass amplification laser is maximum, and the gain medium is in the gain saturation state. So this result indicates that the minimum gain coefficient at this moment is due to the gain saturation effect. Using a similar calculation method to analyze the spatial distribution of gain coefficients, the gain on the plasma axis is larger than that off the plasma axis. These results lay a foundation for the subsequent establishment of resonant cavity and the multi-pass amplification experiment of capillary discharge Ne-like Ar laser.
      通信作者: 赵永蓬, zhaoyp3@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61875045)和天津市自然科学基金(批准号: 17JCYBJC18200)资助的课题.
      Corresponding author: Zhao Yong-Peng, zhaoyp3@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61875045) and the Natural Science Foundation of Tianjin, China (Grant No. 17JCYBJC18200).
    [1]

    Carbajo S, Howlett I D, Brizuela F, Buchanan K S, Marconi M C 2012 Opt. Lett. 37 2994Google Scholar

    [2]

    Nejdl J, Howlett I D, Carlton D, Anderson E H, Chao W, Marconi M C, Rocca J J, Menoni C S 2015 IEEE Photon. J. 7 1

    [3]

    Rocca J J, Shlyaptsev V, Tomasel F G, Cortazar O D, Hartshorn D, Chilla J L 1994 Phys. Rev. Lett. 73 2192Google Scholar

    [4]

    Zhao Y P, Jiang S, Xie Y, Yang D W, Teng S P, Chen D Y, Wang Q 2011 Opt. Lett. 36 3458Google Scholar

    [5]

    Frati M, Seminario M, Rocca J J 2000 Opt. Lett. 25 1022Google Scholar

    [6]

    Tomasel F G, Rocca J J, Shlyaptsev V N, Macchietto C D 1997 Phys. Rev. A 55 1437Google Scholar

    [7]

    Elton R C, Datla R U, Roberts J R, Bhatia A K 1989 Phys. Rev. A 40 4142Google Scholar

    [8]

    Bernstein E R, Dong F, Guo Y Q, Shin J W, Heinbuch S, Rocca J J 2016 X-Ray Laser (Switzerland: Springer) p359

    [9]

    Menoni C S, Nejdl J, Monserud N, Howleet I D, Carlton D, Anderson E H, Chao W, Marconi M C, Rocca J J 2016 X-Ray Laser 2014 (Switzerland: Springer) p259

    [10]

    Suckewer S, Skinner C H, Milchberg H, Keane C, Voorhee D 1985 Phys. Rev. Lett. 55 1753Google Scholar

    [11]

    Ceglio N M, Gaines D P, Trebes J E, London R A, Stearns D G 1988 Appl. Opt. 27 5022Google Scholar

    [12]

    Murai K, Yuan G, Kodama R, Daido H, Kato Y, Niibe M, Miyake A, Tsukamoto M, Fukuda Y, Neely D, Macphee A G 1994 Jpn. J. Appl. Phys. 33 L600Google Scholar

    [13]

    Carillon A, Chen H Z, Dhez P, Dwivedi L, Jacoby J, Jaegle P, Jamelot G, Zhang J, Key M H, Kidd A, Klisnick A, Kodama R, Krishnan J, Lewis C, Neely D, Norreys P, O’Neill D, Pert G J, Ramsden S, Raucourt J P, Tallents G, Uhomoibhi J O 1992 Phys. Rev. Lett. 68 2917Google Scholar

    [14]

    He S T, Chunyu S T, Zhang Q R, He A, Shen H Z, Ni Y L, Yu S Y 1992 Phys. Rev. A 46 1610Google Scholar

    [15]

    安红海, 王琛, 方智恒, 熊俊, 孙今人, 王伟, 傅思祖, 乔秀梅, 郑无敌, 张国平 2011 物理学报 60 104207Google Scholar

    An H H, Wang C, Fang Z H, Xiong J, Sun J R, Wang W, Fu S Z, Qiao X M, Zheng W D, Zhang G P 2011 Acta Phys. Sin. 60 104207Google Scholar

    [16]

    Ceglio N M, Gaines D P, Stearns D G, Hawryluk A M 1989 Opt. Commun. 69 285Google Scholar

    [17]

    Rus B, Mocek T, Präg A R, Kozlová M, Jamelot G, Carillon A, Ros D, Joyeux D, Phalippou D 2002 Phys. Rev. A 66 063806Google Scholar

    [18]

    Rocca J J, Clark D P, Chilla J L A, Shlyaptsev V N 1996 Phys. Rev. Lett. 77 1476Google Scholar

    [19]

    Zhao Y P, Liu T, Zhang W H, Li W, Cui H Y 2016 Opt. Lett. 41 3779Google Scholar

    [20]

    Rus B, Carillon A, Dhez P, Jaegle´ P, Jamelot G, Klisnick A, Nantel M, Zeitoun P 1997 Phys. Rev. A 55 3858Google Scholar

    [21]

    Zhao Y P, Liu T, Jiang S, Cui H Y, Ding Y J, Li L 2016 Appl. Phys. B 122 107

  • 图 1  双程放大实验反射镜位置示意图

    Fig. 1.  Schematic diagram of position of mirror in double-pass amplification.

    图 2  单程放大和双程放大输出脉冲波形 (a)单程放大输出; (b)双程放大输出

    Fig. 2.  The pulse waveform of single-pass amplification and double-pass amplification output: (a) Single-pass amplification output; (b) double-pass amplification output.

    图 3  毛细管径向上CCD图像 (a)单程放大强度图像; (b)双程放大强度图像

    Fig. 3.  CCD image in capillary radius: (a) Intensity image of single-pass amplification; (b) intensity image of double-pass amplification.

    图 4  毛细管径向上激光束散角 (a) 单程放大的束散角; (b) 双程放大的束散角

    Fig. 4.  Laser divergence angle in capillary radius: (a) Divergence angle of the single-pass amplification; (b) divergence angle of the double-pass amplification.

    图 5  69.8 nm激光的增益系数随时间的变化

    Fig. 5.  Gain coefficient as a function of time for 69.8 nm laser.

    图 6  69.8 nm激光峰值处的增益系数在空间上的分布情况

    Fig. 6.  Gain coefficient as a function of angle in the spatial distribution for 69.8 nm laser peak.

    表 1  单程放大与双程放大尖峰位置处激光强度

    Table 1.  The peak position laser intensity of single-pass amplification and double-pass amplification.

    尖峰位置/mrad −1.41 −0.92 −0.49 0 0.25 0.68 1.23
    单程放大强度/arb.units 2345 4525 6708 15712 9964 7076 7017
    双程放大强度/arb.units 55844 56762 56128 51205 54803 50772 44720
    增长倍数 23.8 12.5 8.4 3.3 5.5 7.2 6.4
    下载: 导出CSV
  • [1]

    Carbajo S, Howlett I D, Brizuela F, Buchanan K S, Marconi M C 2012 Opt. Lett. 37 2994Google Scholar

    [2]

    Nejdl J, Howlett I D, Carlton D, Anderson E H, Chao W, Marconi M C, Rocca J J, Menoni C S 2015 IEEE Photon. J. 7 1

    [3]

    Rocca J J, Shlyaptsev V, Tomasel F G, Cortazar O D, Hartshorn D, Chilla J L 1994 Phys. Rev. Lett. 73 2192Google Scholar

    [4]

    Zhao Y P, Jiang S, Xie Y, Yang D W, Teng S P, Chen D Y, Wang Q 2011 Opt. Lett. 36 3458Google Scholar

    [5]

    Frati M, Seminario M, Rocca J J 2000 Opt. Lett. 25 1022Google Scholar

    [6]

    Tomasel F G, Rocca J J, Shlyaptsev V N, Macchietto C D 1997 Phys. Rev. A 55 1437Google Scholar

    [7]

    Elton R C, Datla R U, Roberts J R, Bhatia A K 1989 Phys. Rev. A 40 4142Google Scholar

    [8]

    Bernstein E R, Dong F, Guo Y Q, Shin J W, Heinbuch S, Rocca J J 2016 X-Ray Laser (Switzerland: Springer) p359

    [9]

    Menoni C S, Nejdl J, Monserud N, Howleet I D, Carlton D, Anderson E H, Chao W, Marconi M C, Rocca J J 2016 X-Ray Laser 2014 (Switzerland: Springer) p259

    [10]

    Suckewer S, Skinner C H, Milchberg H, Keane C, Voorhee D 1985 Phys. Rev. Lett. 55 1753Google Scholar

    [11]

    Ceglio N M, Gaines D P, Trebes J E, London R A, Stearns D G 1988 Appl. Opt. 27 5022Google Scholar

    [12]

    Murai K, Yuan G, Kodama R, Daido H, Kato Y, Niibe M, Miyake A, Tsukamoto M, Fukuda Y, Neely D, Macphee A G 1994 Jpn. J. Appl. Phys. 33 L600Google Scholar

    [13]

    Carillon A, Chen H Z, Dhez P, Dwivedi L, Jacoby J, Jaegle P, Jamelot G, Zhang J, Key M H, Kidd A, Klisnick A, Kodama R, Krishnan J, Lewis C, Neely D, Norreys P, O’Neill D, Pert G J, Ramsden S, Raucourt J P, Tallents G, Uhomoibhi J O 1992 Phys. Rev. Lett. 68 2917Google Scholar

    [14]

    He S T, Chunyu S T, Zhang Q R, He A, Shen H Z, Ni Y L, Yu S Y 1992 Phys. Rev. A 46 1610Google Scholar

    [15]

    安红海, 王琛, 方智恒, 熊俊, 孙今人, 王伟, 傅思祖, 乔秀梅, 郑无敌, 张国平 2011 物理学报 60 104207Google Scholar

    An H H, Wang C, Fang Z H, Xiong J, Sun J R, Wang W, Fu S Z, Qiao X M, Zheng W D, Zhang G P 2011 Acta Phys. Sin. 60 104207Google Scholar

    [16]

    Ceglio N M, Gaines D P, Stearns D G, Hawryluk A M 1989 Opt. Commun. 69 285Google Scholar

    [17]

    Rus B, Mocek T, Präg A R, Kozlová M, Jamelot G, Carillon A, Ros D, Joyeux D, Phalippou D 2002 Phys. Rev. A 66 063806Google Scholar

    [18]

    Rocca J J, Clark D P, Chilla J L A, Shlyaptsev V N 1996 Phys. Rev. Lett. 77 1476Google Scholar

    [19]

    Zhao Y P, Liu T, Zhang W H, Li W, Cui H Y 2016 Opt. Lett. 41 3779Google Scholar

    [20]

    Rus B, Carillon A, Dhez P, Jaegle´ P, Jamelot G, Klisnick A, Nantel M, Zeitoun P 1997 Phys. Rev. A 55 3858Google Scholar

    [21]

    Zhao Y P, Liu T, Jiang S, Cui H Y, Ding Y J, Li L 2016 Appl. Phys. B 122 107

  • [1] 赵月琪, 崔佩霖, 李建龙, 李博原, 祝昕哲, 陈民, 刘振宇. 用于激光尾波加速的弯曲毛细管内气流运动的模拟研究. 物理学报, 2023, 72(18): 184701. doi: 10.7498/aps.72.20230893
    [2] 石志奇, 何晓, 刘琳, 陈德华, 王秀明. 毛细管压力作用下的非饱和双重孔隙介质中弹性波传播. 物理学报, 2023, 72(6): 069101. doi: 10.7498/aps.72.20222063
    [3] 祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰. 面向激光等离子体尾波加速的毛细管放电实验研究. 物理学报, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [4] 王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越. 腔体结构参数对毛细管放电型脉冲等离子体推力器放电特性的影响. 物理学报, 2021, 70(23): 235204. doi: 10.7498/aps.70.20211198
    [5] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器. 物理学报, 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [6] 吕月兰, 尹向宝, 孙伟民, 刘永军, 苑立波. 染料掺杂液晶填充毛细管的激光发射特性研究. 物理学报, 2018, 67(4): 044204. doi: 10.7498/aps.67.20171844
    [7] 刘涛, 赵永蓬, 丁宇洁, 李小强, 崔怀愈, 姜杉. 毛细管放电类氖氩69.8 nm激光增益特性研究. 物理学报, 2017, 66(15): 155201. doi: 10.7498/aps.66.155201
    [8] 赵永蓬, 李连波, 崔怀愈, 姜杉, 刘涛, 张文红, 李伟. 毛细管放电69.8nm激光强度空间分布特性研究. 物理学报, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [9] 赵永蓬, 徐强, 肖德龙, 丁宁, 谢耀, 李琦, 王骐. Xe介质极紫外光源时间特性及最佳条件研究. 物理学报, 2013, 62(24): 245204. doi: 10.7498/aps.62.245204
    [10] 邱巍, 吕品, 马英驰, 徐晓娟, 刘典, 张程华. 均匀展宽增益介质中超光速饱和现象的研究. 物理学报, 2012, 61(10): 104209. doi: 10.7498/aps.61.104209
    [11] 董克攻, 吴玉迟, 郑无敌, 朱斌, 曹磊峰, 何颖玲, 马占南, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 魏来, 臧华平, 余金清, 谷渝秋, 张保汉, 王晓方. 充气型放电毛细管的密度测量及磁流体模拟. 物理学报, 2011, 60(9): 095202. doi: 10.7498/aps.60.095202
    [12] 安红海, 王琛, 方智恒, 熊俊, 孙今人, 王伟, 傅思祖, 乔秀梅, 郑无敌, 张国平. 反射镜双程放大对类氖锗软X射线激光的输出影响研究. 物理学报, 2011, 60(10): 104207. doi: 10.7498/aps.60.104207
    [13] 沈云, 范定寰, 傅继武, 于国萍. 加入增益介质的表面等离子体激元耦合共振波导传输特性理论研究. 物理学报, 2011, 60(11): 117302. doi: 10.7498/aps.60.117302
    [14] 黄文同, 李寿哲, 王德真, 马腾才. 大气压下绝缘毛细管内等离子体放电及其特性研究. 物理学报, 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
    [15] 陈 芳, 曾健华, 周建英. 周期排列共振放大介质的小信号增益特性研究. 物理学报, 2007, 56(7): 4175-4179. doi: 10.7498/aps.56.4175
    [16] 孙 姣, 张家良, 王德真, 马腾才. 一种新型大气压毛细管介质阻挡放电冷等离子体射流技术. 物理学报, 2006, 55(1): 344-350. doi: 10.7498/aps.55.344
    [17] 陈宝振, 黄祖洽. 飞秒强激光在充气毛细管中产生三次谐波的效率. 物理学报, 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
    [18] 程元丽, 栾伯含, 吴寅初, 赵永蓬, 王 骐, 郑无敌, 彭惠民, 杨大为. 预脉冲在毛细管快放电软x射线激光中的作用. 物理学报, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [19] 赵永蓬, 程元丽, 王 骐, 林 靖, 崛田荣喜. 毛细管放电激励软x射线激光的产生时间. 物理学报, 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
    [20] 陈宝振, 黄祖洽. 充气毛细管中飞秒激光四波混频的理论描述. 物理学报, 2004, 53(12): 4218-4223. doi: 10.7498/aps.53.4218
计量
  • 文章访问数:  6422
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-30
  • 修回日期:  2018-11-19
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回