搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹量子级联激光器中有源区上激发态电子向高能级泄漏的研究

李金锋 万婷 王腾飞 周文辉 莘杰 陈长水

引用本文:
Citation:

太赫兹量子级联激光器中有源区上激发态电子向高能级泄漏的研究

李金锋, 万婷, 王腾飞, 周文辉, 莘杰, 陈长水

Electrons leakage from upper laser level to high energy levels in active regions of terahertz quantum cascade lasers

Li Jin-Feng, Wan Ting, Wang Teng-Fei, Zhou Wen-Hui, Xin Jie, Chen Chang-Shui
PDF
HTML
导出引用
  • 利用热力学统计理论和激光器输出特性理论, 建立了太赫兹量子级联激光器(THz QCL)有源区中上激发态电子往更高能级电子态泄漏的计算模型, 以输出功率度量电子泄漏程度研究分析了晶格温度和量子阱势垒高度对电子泄漏的影响. 数值仿真结果表明, 晶格温度上升会加剧电子泄漏, 并且电子从上激发态泄漏到束缚态的数量大于泄漏到阱外连续态, 同时温度的上升也会降低激光输出功率. 增加量子阱势垒高度能抑制电子泄漏, 并且有源区量子阱结构中存在一个最优量子阱势垒高度. THz QCL经过最优量子阱势垒高度优化后, 工作温度得到提升, 其输出功率相比于以往的结果也有所提高. 研究结果对优化THz QCL有源区结构、抑制电子泄漏和改善激光器输出特性有指导作用.
    Terahertz quantum cascade laser is a semiconductor laser that effectively obtains terahertz waves. It uses the semiconductor heterojunction to have a quantum cascade effect under an applied voltage, and then the phonon assists the electron resonance from the upper stage to the next stage, so that a single electron injected externally can emit multiple photons. However, some electrons will deviate from the transport path during transportation and these electrons are called leakage electrons. Electron leakage comes from three ways. The first way is the scattering of electrons from the upper laser level through the long longitudinal phonon to the low energy level; the second way is the scattering of electrons from the lower laser level to the high energy bound level and the continuous level; and the third way is the scattering of electrons from the upper laser level to high energy bound levels and continuous levels. These leakage electrons directly reduce the number of population inversions in the laser system, making the laser output power limited. At present, most of researchers explain the electron leakage through indirect measurements, and there are few studies in which the electron leakage is analyzed by establishing theoretical models. In this paper, the electron leakage model in THz QCL is established by using thermodynamic statistical theory and laser output characteristic theory. The degree of electron leakage is measured by output power. The influence of lattice temperature and quantum well barrier height on electron leakage are studied. It is found that when the lattice temperature rises and the electrons in the upper laser state leak to higher energy levels, the number of electrons leaking to the adjacent bound state and the continuous state increases, and the number of electrons leaking to the next near-bound level is relatively small. In the case of electron leakage, the utilization of electrons becomes lowered, and the laser output power is also lowered. The study also shows that an appropriate increase in the height of the quantum barrier can suppress the leakage of electrons. Using the established theoretical model to optimize the quantum well barrier height of the previously reported laser system, an 8 mW terahertz quantum cascade laser (THz QCL) laser output at 210 K is obtained. Compared with the reported experimental results, the temperature and output power are improved. These results provide a theoretical basis for studying the electron leakage temperature characteristics of THz QCL and also optimally designing the THz QCL active region structure.
      通信作者: 陈长水, cschen@aiofm.ac.cn
    • 基金项目: 广东省自然科学基金(批准号: 2015A030313383)资助的课题.
      Corresponding author: Chen Chang-Shui, cschen@aiofm.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030313383).
    [1]

    孙怡雯, 钟俊兰, 左剑, 张存林, 但果 2015 物理学报 64 169701

    Sun Y W, Zhong J L, Zuo J, Zhang C L, Dan G 2015 Acta Phys. Sin. 64 169701

    [2]

    Yardimci N T, Lu H, Jarrahi M 2016 Appl. Phys. Lett. 109 191103Google Scholar

    [3]

    王珊, 王辅忠 2018 物理学报 67 160502Google Scholar

    Wang S, Wang F Z 2018 Acta Phys. Sin. 67 160502Google Scholar

    [4]

    Bing P B, Yao J Q, Xu D G, Xu X Y, Li Z Y 2010 Chin. Phys. Lett. 27 124209Google Scholar

    [5]

    张真真 黎华 曹俊诚 2018 物理学报 67 090702

    Zhang Z Z, Li H, Cao J C 2018 Acta Phys. Sin. 67 090702

    [6]

    Zhang Z Z, Fu Z L, Guo X G, Cao J C 2018 Chin. Phys. B 27 030701Google Scholar

    [7]

    Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C, Rossi F 2002 Nature 417 156Google Scholar

    [8]

    Ravaro M, Gellie P, Santarelli G, Manquest C, Filloux P, Sirtori C, Jean-Francois, Ferrari G, Khanna S P, Linfield E H 2013 IEEE J. Sel. Top. Quantum Electron. 19 8501011Google Scholar

    [9]

    Fathololoumi S, Dupont E, Chan C, Wasilewski Z, Laframboise S, Ban D, Matyas A, Jirauschek C, Hu Q, Liu H C 2012 Opt. Express 20 3866Google Scholar

    [10]

    Li L, Liu F Q, Shao Y, Liu J Q, Wang Z G 2007 Chin. Phys. Lett. 24 1577Google Scholar

    [11]

    Albo A, Hu Q 2015 Appl. Phys. Lett. 107 241101Google Scholar

    [12]

    Albo A, Hu Q, Reno J L 2016 Appl. Phys. Lett. 109 081102Google Scholar

    [13]

    Krüger O, Kreutzmann S, Prasai D, Wienold M, Sharma R, Pittro W, Weixelbaum L, John W, Biermann K, Schrottke L 2013 IEEE Photon. Technol. Lett. 25 1570Google Scholar

    [14]

    Lin T T, Wang L, Wang K, Grange T, Hirayama H 2018 Appl. Phys. Express 11 112702Google Scholar

    [15]

    Monastyrskyi G, Elagin M, Klinkmüller M, Aleksandrova A, Kurlov S, Flores Y V, Kischkat J, Semtsiv M P, Masselink W T 2013 J. Appl. Phys. 113 134509Google Scholar

    [16]

    Flores Y V, Semtsiv M P, Elagin M, Monastyrskyi G, Kurlov S, Aleksandrova A, Kischkat J, Masselink W T 2013 J. Appl. Phys. 113 134506Google Scholar

    [17]

    Kumar S, Hu Q, Reno J L 2009 Appl. Phys. Lett. 94 131105Google Scholar

    [18]

    Albo A, Hu Q 2015 Appl. Phys. Lett. 106 131108Google Scholar

    [19]

    Kumar S, Chan C W I, Hu Q, Reno J L 2011 Nature Phys. 7 166Google Scholar

    [20]

    Harrison P, Indjin D, Kelsall R W 2002 J. Appl. Phys. 92 6921Google Scholar

    [21]

    Spagnolo V, Scamarcio G, Page H, Sirtori C 2004 Appl. Phys. Lett. 84 3690Google Scholar

    [22]

    Schneider H, Klitzing K V 1988 Phys. Rev. B 38 6160Google Scholar

    [23]

    Faist J 2013 Quantum Cascade Lasers (Oxford: Oxford University Press) pp72−73

    [24]

    Bhattacharya I, Chan C W I, Hu Q 2012 Appl. Phys. Lett. 100 011108Google Scholar

    [25]

    Botez D, Chang C C, Mawst L J 2016 J. Phys. D 49 043001Google Scholar

  • 图 1  THz QCL级联的能级结构

    Fig. 1.  Energy level structure of a single THz QCL cascade.

    图 2  泄漏电流密度与晶格温度的关系

    Fig. 2.  Relationship between leakage current density and temperature.

    图 3  归一化输出功率与晶格温度的关系

    Fig. 3.  Relationship between normalized output power and lattice temperature.

    图 4  归一化输出功率与势垒高度参数的关系

    Fig. 4.  Relationship between normalized output power and barrier height parameters.

  • [1]

    孙怡雯, 钟俊兰, 左剑, 张存林, 但果 2015 物理学报 64 169701

    Sun Y W, Zhong J L, Zuo J, Zhang C L, Dan G 2015 Acta Phys. Sin. 64 169701

    [2]

    Yardimci N T, Lu H, Jarrahi M 2016 Appl. Phys. Lett. 109 191103Google Scholar

    [3]

    王珊, 王辅忠 2018 物理学报 67 160502Google Scholar

    Wang S, Wang F Z 2018 Acta Phys. Sin. 67 160502Google Scholar

    [4]

    Bing P B, Yao J Q, Xu D G, Xu X Y, Li Z Y 2010 Chin. Phys. Lett. 27 124209Google Scholar

    [5]

    张真真 黎华 曹俊诚 2018 物理学报 67 090702

    Zhang Z Z, Li H, Cao J C 2018 Acta Phys. Sin. 67 090702

    [6]

    Zhang Z Z, Fu Z L, Guo X G, Cao J C 2018 Chin. Phys. B 27 030701Google Scholar

    [7]

    Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C, Rossi F 2002 Nature 417 156Google Scholar

    [8]

    Ravaro M, Gellie P, Santarelli G, Manquest C, Filloux P, Sirtori C, Jean-Francois, Ferrari G, Khanna S P, Linfield E H 2013 IEEE J. Sel. Top. Quantum Electron. 19 8501011Google Scholar

    [9]

    Fathololoumi S, Dupont E, Chan C, Wasilewski Z, Laframboise S, Ban D, Matyas A, Jirauschek C, Hu Q, Liu H C 2012 Opt. Express 20 3866Google Scholar

    [10]

    Li L, Liu F Q, Shao Y, Liu J Q, Wang Z G 2007 Chin. Phys. Lett. 24 1577Google Scholar

    [11]

    Albo A, Hu Q 2015 Appl. Phys. Lett. 107 241101Google Scholar

    [12]

    Albo A, Hu Q, Reno J L 2016 Appl. Phys. Lett. 109 081102Google Scholar

    [13]

    Krüger O, Kreutzmann S, Prasai D, Wienold M, Sharma R, Pittro W, Weixelbaum L, John W, Biermann K, Schrottke L 2013 IEEE Photon. Technol. Lett. 25 1570Google Scholar

    [14]

    Lin T T, Wang L, Wang K, Grange T, Hirayama H 2018 Appl. Phys. Express 11 112702Google Scholar

    [15]

    Monastyrskyi G, Elagin M, Klinkmüller M, Aleksandrova A, Kurlov S, Flores Y V, Kischkat J, Semtsiv M P, Masselink W T 2013 J. Appl. Phys. 113 134509Google Scholar

    [16]

    Flores Y V, Semtsiv M P, Elagin M, Monastyrskyi G, Kurlov S, Aleksandrova A, Kischkat J, Masselink W T 2013 J. Appl. Phys. 113 134506Google Scholar

    [17]

    Kumar S, Hu Q, Reno J L 2009 Appl. Phys. Lett. 94 131105Google Scholar

    [18]

    Albo A, Hu Q 2015 Appl. Phys. Lett. 106 131108Google Scholar

    [19]

    Kumar S, Chan C W I, Hu Q, Reno J L 2011 Nature Phys. 7 166Google Scholar

    [20]

    Harrison P, Indjin D, Kelsall R W 2002 J. Appl. Phys. 92 6921Google Scholar

    [21]

    Spagnolo V, Scamarcio G, Page H, Sirtori C 2004 Appl. Phys. Lett. 84 3690Google Scholar

    [22]

    Schneider H, Klitzing K V 1988 Phys. Rev. B 38 6160Google Scholar

    [23]

    Faist J 2013 Quantum Cascade Lasers (Oxford: Oxford University Press) pp72−73

    [24]

    Bhattacharya I, Chan C W I, Hu Q 2012 Appl. Phys. Lett. 100 011108Google Scholar

    [25]

    Botez D, Chang C C, Mawst L J 2016 J. Phys. D 49 043001Google Scholar

  • [1] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [2] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器. 物理学报, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [3] 惠战强. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211650
    [4] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211831
    [5] 李杭, 陈萍, 田进寿. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210871
    [6] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [7] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [8] 魏相飞, 何锐, 张刚, 刘向远. InAs/GaSb量子阱中太赫兹光电导特性. 物理学报, 2018, 67(18): 187301. doi: 10.7498/aps.67.20180769
    [9] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [10] 朱永浩, 黎华, 万文坚, 周涛, 曹俊诚. 三阶分布反馈太赫兹量子级联激光器的远场分布特性. 物理学报, 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [11] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [12] 张会云, 刘蒙, 张玉萍, 何志红, 申端龙, 吴志心, 尹贻恒, 李德华. 基于振动弛豫理论提高光抽运太赫兹激光器输出功率的研究. 物理学报, 2014, 63(1): 010702. doi: 10.7498/aps.63.010702
    [13] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚. 2.9THz束缚态向连续态跃迁量子级联激光器研制. 物理学报, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [14] 白晋军, 王昌辉, 侯宇, 范飞, 常胜江. 太赫兹双芯光子带隙光纤定向耦合器. 物理学报, 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [15] 陈吴玉婷, 韩鹏昱, Kuo Mei-Ling, Lin Shawn-Yu, 张希成. 具有缓变折射率的太赫兹宽带增透器件. 物理学报, 2012, 61(8): 088401. doi: 10.7498/aps.61.088401
    [16] 谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚. 基于太赫兹量子级联激光器的无线信号传输的实现. 物理学报, 2012, 61(9): 098701. doi: 10.7498/aps.61.098701
    [17] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [18] 朱亦鸣, Kaz Hirakawa, 陈麟, 何波涌, 黄元申, 贾晓轩, 张大伟, 庄松林. 超低温高电场下GaAs的电子太赫兹功耗谱的研究. 物理学报, 2009, 58(4): 2692-2696. doi: 10.7498/aps.58.2692
    [19] 常俊, 黎华, 韩英军, 谭智勇, 曹俊诚. 太赫兹量子级联激光器材料生长及表征. 物理学报, 2009, 58(10): 7083-7087. doi: 10.7498/aps.58.7083
    [20] 徐刚毅, 李爱珍. 量子级联激光器有源核中界面声子的特性研究. 物理学报, 2007, 56(1): 500-506. doi: 10.7498/aps.56.500
计量
  • 文章访问数:  6976
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-22
  • 修回日期:  2018-11-21
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回