搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烧结β型Ti-Nb合金中由间隙原子引起的Snoek弛豫

周正存 杜洁 朱晓斌 严勇健 王幸福

引用本文:
Citation:

烧结β型Ti-Nb合金中由间隙原子引起的Snoek弛豫

周正存, 杜洁, 朱晓斌, 严勇健, 王幸福

Snoek-type relaxation caused by interstitial atoms in sintered β-type Ti-Nb alloy

Zhou Zheng-Cun, Du Jie, Zhu Xiao-Bin, Yan Yong-Jian, Wang Xing-Fu
PDF
HTML
导出引用
  • 用粉末冶金方法制备了不同Nb含量的Ti-Nb合金. 用美国TA仪器公司的动力学分析仪Q800以单臂振动模式研究了不同Nb含量和不同热处理以及不同测量参数下的Ti-Nb合金的内耗行为, 用X-射线衍射检测了不同样品的微观结构. 实验表明, 在水淬的和烧结态的Ti-Nb合金的内耗-温度曲线上均发现了弛豫型的内耗峰, 这个内耗峰的高度与Nb含量有关, 在低Nb含量的Ti-Nb合金样品中不出现, 水淬样品内耗峰的最大值出现在Ti-35.4 wt.%Nb (以下称Ti-35.4Nb)的合金中, 烧结态样品的内耗峰高度在实验成分范围内单调地随Nb含量而增加. 水淬的Ti-35.4Nb合金的弛豫参数分别是激活能Hwq = (1.67 ± 0.1) eV和指数前因子τ0wq = 1.1 × 10-17 ± 1 s. 另外, 内耗峰的高度也与热处理有关, 水淬的Ti-35.4Nb合金比具有相同成分的烧结态的合金的内耗峰高得多, 淬火温度对内耗峰高度也有影响. 研究发现, 这个内耗峰与Ti-Nb合金中的β相有关, 峰高取决于β相的稳定性及其含量, 当β相的稳定性降低以及β相的量增加时, 峰高增加. 水淬Ti-35.4Nb合金中的β相是亚稳状态的β相(βM), 时效时βM能转变成稳定的α相和稳定β相(βS), 烧结态合金中的β相是βS. 不同热处理状态下Ti-35.4Nb合金样品的微观结构的不同导致了内耗峰高度的差别. 从微观结构分析, 在淬火的合金中, 峰高最大值出现在35 wt.% Nb含量附近的现象是由β相的稳定性和βM相的量随Nb含量变化引起的. 在烧结态的Ti-Nb合金中, 峰高单调地随Nb含量的增加而增加的情况是由βS的量决定的. 在循环应力作用下, βMβS相晶格点阵中氧原子的跳动和氧原子与替代原子的相互作用是产生内耗峰的根源.
    The β-type Ti-Nb alloys are potential shape memory and superelasticity materials. The interstitial atoms in the alloys have important effect on their physical and mechanical properties. For the interstitial atoms, the internal friction technique can be used to detect their distributions and status in the alloys. The influences of chemical compositions and heat treatments on the microstructures of the containing-oxygen Ti-Nb alloys are given, and a clear understanding and the relaxational mechanism of the internal friction peak correlated with oxygen are also clearly discussed by investigating the internal friction behavior of the alloys and the detecting their microstructures. The Ti-Nb alloys with different Nb content values are prepared by powder metallurgy. The internal friction behaviors of Ti-Nb alloys with different Nb content values and heat treatments are investigated by using dynamic mechanical analysis (dynamic mechanical analyzer, DMA) Q800 from TA Instruments in single cantilever mode under different testing parameters and conditions from room temperature to 350 ℃. The X-ray diffraction experiments are also carried out in order to detect the differences among the microstructures of the specimens with different heat treatments for the Ti-35.4Nb alloy. It is shown that relaxational internal friction peaks are found on the internal friction temperature dependent curves of the sintered and water-quenched alloys. The internal friction peak is correlated with Nb content. The peak does not appear in the sintered Ti-Nb alloys with low Nb content. The maximum of the internal friction peak appears in the quenched alloy with about 35% Nb. The internal friction peak height increases monotonically with Nb content increasing in the present testing composition range for the sintered alloys. The relaxation parameters are the activation energy Hwq = (1.67 ± 0.1) eV and the preexponential factor τowq = 1.1 × 10-17 ± 1 s for the quenched Ti-35.4Nb alloy . In addition, the peak height also depends on heat treatment. The water-quenched Ti-35.4Nb alloy has much higher internal friction peak than the as-sintered alloy with identical compositions. The internal friction peak height is also correlated with the quenching temperature. It is found that the peak is linked to the β phase of Ti-Nb alloys and that the peak height is determined by the stability and amount of the β phase from their microstructures. When the stability of the β phase decreases, the peak height increases, and the increase in the amount of β phase results in the increase of the peak height. The β phase in the quenched Ti-35.4Nb specimen is metastable β phase (βM), which can be transformed into the stable α and βS by ageing. The β phase in as-sintered specimen is the stable β phase (βS). The modifications of microstructures of the specimens with different heat treatments result in the difference in peak height between the water-quenched and as-sintered Ti-35.4Nb specimens. That the peak height presents a maximum in the vicinity of 35 wt.% Nb for the quenched alloys results from the variation of the stability and amount of βM with Nb content. That the height of the peak increases monotonically with Nb content increasing in as-sintered alloys is attributed to the increase of the amount of βS. It is suggested that the internal friction peak is related to oxygen jump in lattice or the interaction between the oxygen-substitute atoms in βM phase for the water-quenched alloys and those in βS phase for the as-sintered alloys.
      通信作者: 周正存, 1355326160@qq.com
      Corresponding author: Zhou Zheng-Cun, 1355326160@qq.com
    [1]

    Murray J L 1987 Phase Diagram of Binary Titanium Alloys, Materials Park (Ohio: American Society for Metals) p188

    [2]

    Chen W M 2018 Calphad 60 98Google Scholar

    [3]

    Grandini C R, Florêncio O, Filho W J B 2012 Defect Diffus. Forum 326-328 708

    [4]

    Isaenkova M, Perlovich Y, Efimova E, Dmitry Z, Krymskaya O 2017 Mater. Sci. Forum 879 2561

    [5]

    Blanter M S, Golovin I S, Neuhäuser H, Sinning H R 2007 Internal Friction in Metallic Materials: A Handbook (Springer Series in Materials Science) (Vol. 90) (Berlin: Springer Berlin Heidelberg) pp1−320

    [6]

    Nowick A S, Berry B S 1972 Anelastic Relaxation in Crystalline Solids (Now York and London: Academic Press) p55, pp225−247

    [7]

    Saitoh H, Yoshinaga N, Ushioda K 2004 Acta Mater. 52 1255Google Scholar

    [8]

    Cantelli R 2006 Mater. Sci. Eng. A 442 5Google Scholar

    [9]

    Weller M 2006 Mater. Sci. Eng. A 442 21Google Scholar

    [10]

    Yin F X, Iwasaki S, Ping D H, Nagai K 2006 Adv. Mater. 18 1541Google Scholar

    [11]

    Yin F X, Yu L, Ping D H, Iwasaki S 2009 Mater. Sci. Forum 614 175Google Scholar

    [12]

    Florêncio O, Botta F W J, Grandini C R, Tejima H, Jodāo J A R 1994 J. Alloys Comp. 211−212 37Google Scholar

    [13]

    Almeida L H , Grandini C R, Caram R 2009 Mater. Sci. Eng. A 521−522 59Google Scholar

    [14]

    Yin F X, Yu L, Ping D H 2009 Mater. Sci. Eng. A 521−522 372Google Scholar

    [15]

    Lu H, Li C X, Yin F X, Fang Q F, Umezawa O 2012 Mater. Sci. Eng. A 541 28Google Scholar

    [16]

    Lu H, Li C X, Yin F X, Fang Q F,Umezawa O 2012 Solid State Phenom. 184 75Google Scholar

    [17]

    Niemeyer T C, Gimenez J M A, Almeida L H, Grandini C R, Florêncio O 2002 Met. Res. 15 143

    [18]

    Yu L, Yin F, Ping D 2007 Phys. Rev. B 75 174105Google Scholar

    [19]

    Hartley C S, Steedly J E, Parsons L D 1965 in: Wheeler J A, Winslow F R (Editors) Diffusion in Body-centered Cubic Metals (Ohio: American Society for Metals)

    [20]

    Miyazaki S, Kim H Y, Hosoda H 2006 Mater. Sci. Eng. A 438–440 18

    [21]

    Matlakhova L A, Matlakhov A N, Monteiro S N 2008 Mater. Charact. 59 1234Google Scholar

    [22]

    Zhou Z C, Du J, Zhang Y K, Gu S Y, Yan Y J, Yang H 2014 International Heat Treatment and Surface Engineering 8 144Google Scholar

    [23]

    Abdel-Hady M, Hinoshita K, Morinaga M 2006 Scripta Mater. 55 477Google Scholar

    [24]

    Rack H J, Kalish D, Fike K D 1970 Mater. Sci. Eng. 6 181Google Scholar

    [25]

    Mantani Y, Tajima M 2006 Mater. Sci. Eng. A 442 409Google Scholar

    [26]

    Fan Z 1993 Scripta Metall. Mater. 29 1427Google Scholar

    [27]

    Ren X, Hagiwara M 2001 Acta Met. 49 3971Google Scholar

    [28]

    Ping D H, Mitarai Y, Yin F X 2005 Scripta Mater. 52 1287Google Scholar

    [29]

    Kim H Y, Kim J I, Inamura T, Hosoda H, Miyazaki S 2006 Mater. Sci. Eng. A 438−440 839

    [30]

    Chang L L, Wang Y D, Ren Y 2016 Mater. Sci. Eng. A 651 442Google Scholar

    [31]

    Dai S J, Wang Y, Chen F 2015 Mater. Charact. 104 16Google Scholar

    [32]

    Martins Jr J R S, Araujo R O, Nogueira R A, Grandini C R 2016 Arch. Metall. Mater. 61 25Google Scholar

  • 图 1  水淬的Ti-35.4 Nb合金tanδ和存储模量随温度和频率的变化关系(ε = 3 × 10–4)

    Fig. 1.  tanδ and storage modulus as a function of temperature for the water-quenched Ti-35.4 Nb alloy at different vibration frequencies (ε = 3 × 10–4)

    图 2  水淬的Ti-35.4Nb合金在不同应变振幅条件下tanδ 随温度的变化(f = 1 Hz)

    Fig. 2.  tanδ as a function of temperature for the water-quenched Ti-35.4Nb alloy for different amplitude (f = 1 Hz)

    图 3  水淬的Ti-Nb合金样品内耗峰高度随Nb含量的变化关系(ε = (2.4—4.3) × 10–4, f = 1 Hz)

    Fig. 3.  The dependence of the peak height on Nb content for the water-quenched Ti-Nb alloys (ε = (2.4−4.3) × 10–4, f = 1 Hz)

    图 4  烧结态Ti-35.4 Nb合金Tanδ和存储模量随温度和频率的变化关系(ε = 3.7 × 10–4)

    Fig. 4.  Tanδ and storage modulus as a function of temperature for the as-sintered Ti-35.4 Nb alloy at different vibration frequencies (ε = 3.7 × 10–4)

    图 5  烧结态的Ti-Nb合金样品内耗峰高度随Nb含量的变化关系(ε = (2.5—4.0) × 10–4, f = 1 Hz)

    Fig. 5.  The dependence of the peak height on Nb content for the as-sintered Ti-Nb alloys (ε = (2.5−4.0) × 10–4, f = 1 Hz)

    图 6  三种热处理状态的Ti-35.4Nb合金样品的XRD结果

    Fig. 6.  XRD results of three Ti-35.4Nb specimens with different heat treatments

    图 7  淬火温度对水淬Ti-35.4Nb样品弛豫强度的影响(ε = (2.8—3.7) × 10–4, f = 1 Hz)

    Fig. 7.  The influence of water-quenching temperature on the relaxation strength of the water-quenched Ti-35.4Nb specimen (ε = (2.8−3.7) × 10–4, f = 1 Hz)

    图 8  室温至350 ℃热循环次数对水淬的Ti-35.4 Nb合金的tanδ和存储模量的影响(ε = 3 × 10–4, f = 1 Hz)

    Fig. 8.  Influences of thermal cycles between room temperature and 350 ℃ on tanδ and storage modulus for the water-quenched Ti-35.4 Nb alloy (ε = 3 × 10–4, f = 1 Hz)

  • [1]

    Murray J L 1987 Phase Diagram of Binary Titanium Alloys, Materials Park (Ohio: American Society for Metals) p188

    [2]

    Chen W M 2018 Calphad 60 98Google Scholar

    [3]

    Grandini C R, Florêncio O, Filho W J B 2012 Defect Diffus. Forum 326-328 708

    [4]

    Isaenkova M, Perlovich Y, Efimova E, Dmitry Z, Krymskaya O 2017 Mater. Sci. Forum 879 2561

    [5]

    Blanter M S, Golovin I S, Neuhäuser H, Sinning H R 2007 Internal Friction in Metallic Materials: A Handbook (Springer Series in Materials Science) (Vol. 90) (Berlin: Springer Berlin Heidelberg) pp1−320

    [6]

    Nowick A S, Berry B S 1972 Anelastic Relaxation in Crystalline Solids (Now York and London: Academic Press) p55, pp225−247

    [7]

    Saitoh H, Yoshinaga N, Ushioda K 2004 Acta Mater. 52 1255Google Scholar

    [8]

    Cantelli R 2006 Mater. Sci. Eng. A 442 5Google Scholar

    [9]

    Weller M 2006 Mater. Sci. Eng. A 442 21Google Scholar

    [10]

    Yin F X, Iwasaki S, Ping D H, Nagai K 2006 Adv. Mater. 18 1541Google Scholar

    [11]

    Yin F X, Yu L, Ping D H, Iwasaki S 2009 Mater. Sci. Forum 614 175Google Scholar

    [12]

    Florêncio O, Botta F W J, Grandini C R, Tejima H, Jodāo J A R 1994 J. Alloys Comp. 211−212 37Google Scholar

    [13]

    Almeida L H , Grandini C R, Caram R 2009 Mater. Sci. Eng. A 521−522 59Google Scholar

    [14]

    Yin F X, Yu L, Ping D H 2009 Mater. Sci. Eng. A 521−522 372Google Scholar

    [15]

    Lu H, Li C X, Yin F X, Fang Q F, Umezawa O 2012 Mater. Sci. Eng. A 541 28Google Scholar

    [16]

    Lu H, Li C X, Yin F X, Fang Q F,Umezawa O 2012 Solid State Phenom. 184 75Google Scholar

    [17]

    Niemeyer T C, Gimenez J M A, Almeida L H, Grandini C R, Florêncio O 2002 Met. Res. 15 143

    [18]

    Yu L, Yin F, Ping D 2007 Phys. Rev. B 75 174105Google Scholar

    [19]

    Hartley C S, Steedly J E, Parsons L D 1965 in: Wheeler J A, Winslow F R (Editors) Diffusion in Body-centered Cubic Metals (Ohio: American Society for Metals)

    [20]

    Miyazaki S, Kim H Y, Hosoda H 2006 Mater. Sci. Eng. A 438–440 18

    [21]

    Matlakhova L A, Matlakhov A N, Monteiro S N 2008 Mater. Charact. 59 1234Google Scholar

    [22]

    Zhou Z C, Du J, Zhang Y K, Gu S Y, Yan Y J, Yang H 2014 International Heat Treatment and Surface Engineering 8 144Google Scholar

    [23]

    Abdel-Hady M, Hinoshita K, Morinaga M 2006 Scripta Mater. 55 477Google Scholar

    [24]

    Rack H J, Kalish D, Fike K D 1970 Mater. Sci. Eng. 6 181Google Scholar

    [25]

    Mantani Y, Tajima M 2006 Mater. Sci. Eng. A 442 409Google Scholar

    [26]

    Fan Z 1993 Scripta Metall. Mater. 29 1427Google Scholar

    [27]

    Ren X, Hagiwara M 2001 Acta Met. 49 3971Google Scholar

    [28]

    Ping D H, Mitarai Y, Yin F X 2005 Scripta Mater. 52 1287Google Scholar

    [29]

    Kim H Y, Kim J I, Inamura T, Hosoda H, Miyazaki S 2006 Mater. Sci. Eng. A 438−440 839

    [30]

    Chang L L, Wang Y D, Ren Y 2016 Mater. Sci. Eng. A 651 442Google Scholar

    [31]

    Dai S J, Wang Y, Chen F 2015 Mater. Charact. 104 16Google Scholar

    [32]

    Martins Jr J R S, Araujo R O, Nogueira R A, Grandini C R 2016 Arch. Metall. Mater. 61 25Google Scholar

  • [1] 糜晓磊, 胡亮, 武博文, 龙强, 魏炳波. 钆含量对Fe-B-Nb-Gd非晶合金磁学性能和氧化机制的影响规律. 物理学报, 2024, 73(9): 097102. doi: 10.7498/aps.73.20232040
    [2] 李育川, 郝刚领, 王金, 王伟国, 王新福, 汪聃. 烧结过程中Ni-Al金属间化合物形成的内耗. 物理学报, 2021, 70(5): 056102. doi: 10.7498/aps.70.20201422
    [3] 吕笑梅, 黄凤珍, 朱劲松. 铁电材料中的电畴: 形成、结构、动性及相关性能. 物理学报, 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [4] 郝刚领, 许巧平, 李先雨, 王伟国. 金属粉末压坯烧结过程的内耗研究. 物理学报, 2019, 68(12): 126101. doi: 10.7498/aps.68.20190031
    [5] 程超, 王逊, 孙嘉兴, 曹超铭, 马云莉, 刘艳侠. Cr含量对Ti-Nb-Cr合金抗腐蚀性影响的电子结构计算. 物理学报, 2018, 67(19): 197101. doi: 10.7498/aps.67.20180956
    [6] 杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚. 间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响. 物理学报, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [7] 黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波. Al和O间隙原子对-Al2O3热力学性质影响的第一性原理计算. 物理学报, 2017, 66(1): 016103. doi: 10.7498/aps.66.016103
    [8] 姜文全, 杜广煜, 巴德纯, 杨帆. 多孔金属薄膜阻尼减振微观机理研究. 物理学报, 2015, 64(14): 146801. doi: 10.7498/aps.64.146801
    [9] 饶建平, 欧阳楚英, 雷敏生, 江风益. 第一性原理计算研究金属Nb和间隙氢原子的相互作用. 物理学报, 2012, 61(4): 047105. doi: 10.7498/aps.61.047105
    [10] 吴筱毅, 熊小敏, 张进修. 扭转应变谱及其在相变研究中的应用. 物理学报, 2012, 61(1): 014601. doi: 10.7498/aps.61.014601
    [11] 吴修胜, 杨春利, 陈志军, 陈初升, 刘卫. La1-xSrxFeO3-δ(0≤x≤2/3)的低频内耗研究. 物理学报, 2009, 58(9): 6419-6424. doi: 10.7498/aps.58.6419
    [12] 孙 蔚, 王清周, 韩福生. 石墨颗粒/CuAlMn形状记忆合金复合材料中的位错内耗峰. 物理学报, 2007, 56(2): 1020-1026. doi: 10.7498/aps.56.1020
    [13] 彭开萍, 陈文哲, 钱匡武. 3004铝合金“反常”锯齿屈服现象的研究. 物理学报, 2006, 55(7): 3569-3575. doi: 10.7498/aps.55.3569
    [14] 张华力, 刘 卫, 李栋才, 吴修胜, 陈初升. La2NiO4+δ体系相分离现象的低频内耗研究. 物理学报, 2004, 53(11): 3834-3838. doi: 10.7498/aps.53.3834
    [15] 王 强, 周正存, 韩福生. 快冷Fe71Al29合金中的两个内耗峰. 物理学报, 2004, 53(11): 3829-3833. doi: 10.7498/aps.53.3829
    [16] 郭丽君, 祖方遒, 朱震刚. 以内耗技术探索Pb-Sn合金熔体的结构变化. 物理学报, 2002, 51(2): 300-303. doi: 10.7498/aps.51.300
    [17] 梁云峰, 水嘉鹏, 陈 刚, 朱震刚. Pb-Sn合金固—液转变过程的内耗行为. 物理学报, 2000, 49(7): 1327-1330. doi: 10.7498/aps.49.1327
    [18] 张杏奎. 关于面心立方体金属中间隙原子内耗理论一文的更正. 物理学报, 1961, 17(11): 53-54. doi: 10.7498/aps.17.53
    [19] 顾世洧. 关于面心立方体合金中间隙原子内耗机构的探讨. 物理学报, 1961, 17(11): 555-558. doi: 10.7498/aps.17.555
    [20] 程开甲, 张杏奎. 面心立方体金属中间隙原子内耗理论. 物理学报, 1958, 14(1): 71-81. doi: 10.7498/aps.14.71
计量
  • 文章访问数:  6701
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-01
  • 修回日期:  2019-02-07
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-20

/

返回文章
返回