搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究

郭丽娟 胡吉松 马新国 项炬

引用本文:
Citation:

二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究

郭丽娟, 胡吉松, 马新国, 项炬

Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure

Guo Li-Juan, Hu Ji-Song, Ma Xin-Guo, Xiang Ju
PDF
HTML
导出引用
  • 采用第一性原理方法研究了二硫化钨/石墨烯异质结的界面结合作用以及电子性质, 结果表明在二硫化钨/石墨烯异质结中, 其界面相互作用是微弱的范德瓦耳斯力. 能带计算结果显示异质结中二硫化钨和石墨烯各自的电子性质得到了保留, 同时, 由于石墨烯的结合作用, 二硫化钨呈现出n型半导体. 通过改变界面的层间距可以调控二硫化钼/石墨烯异质结的肖特基势垒类型, 层间距增大, 肖特基将从p型转变为n型接触. 三维电荷密度差分图表明, 负电荷聚集在二硫化钨附近, 正电荷聚集在石墨烯附近, 从而在界面处形成内建电场. 肖特基势垒变化与界面电荷流动密切相关, 平面平均电荷密度差分图显示, 随着层间距逐渐增大, 界面电荷转移越来越弱, 且空间电荷聚集区位置向石墨烯层方向靠近, 导致费米能级向上平移, 证实了肖特基势垒随着层间距的增加由p型接触向n型转变. 本文的研究结果将为二维范德瓦耳斯场效应管的设计与制作提供指导.
    Two-dimensional (2D) materials exhibit massive potential in research and development in the scientific world due to their unique electrical, optical, thermal and mechanical properties. Graphene is an earliest found two-dimensional material, which has many excellent properties, such as high carrier mobility and large surface area. However, single layer graphene has a zero band gap, which limits its response in electronic devices. Unlike graphene, the transition metal sulfides (TMDs) have various band structures and chemical compositions, which greatly compensate for the defect of zero gap in graphene. The WS2 is one of the 2D TMDs exhibiting a series of unique properties, such as strong spin-orbit coupling, band splitting and high nonlinear susceptibility, which make it possess many applications in semiconducting optoelectronics and micro/nano-electronics. The 2D semiconductors along with semimetallic graphene are seen as basic building blocks for a new generation of nanoelectronic devices. In this way, the artificially designed TMD heterostructure is a promising option for ultrathin photodetectors. There are few reports on the physical mechanism of carrier mobility and charge distribution at the interface of WS2/graphene heterostructure, by varying the interfacial distance of WS2/graphene heterostructure to investigate the effect on the electronic properties. Here in this work, the corresponding effects of interface cohesive interaction and electronic properties of WS2/graphene heterostructure are studied by first-principles method. The calculation results indicate that the lattice mismatch between monolayer WS2 and graphene is low, the equilibrium layer distance d of about 3.42 Å for the WS2/graphene heterostructure and a weak van der Waals interaction forms in interface. Further, by analyzing the energy band structures and the three-dimensional charge density difference of WS2/graphene, we can identify that at the interface of the WS2 layer there appears an obvious electron accumulation: positive charges are accumulated near to the graphene layer, showing that WS2 is an n-type semiconductor due to the combination with graphene. Furthermore, the total density of states and corresponding partial density of states of WS2/graphene heterostructure are investigated, and the results show that the valence band is composed of hybrid orbitals of W 5d and C 2p, whereas the conduction band is comprised of W 5d and S 3p orbitals, the orbital hybridization between W 5d and S 3p will cause photogenerated electrons to transfer easily from the internal W atoms to the external S atoms, thereby forming a build-in internal electric field from graphene to WS2. Finally, by varying the interfacial distance for analyzing the Schottky barrier transition, as the interfacial distance is changed greatly from 2.4 Å to 4.2 Å, the shape of the band changes slightly, however, the Fermi level descends relatively gradually, which can achieve the transition from a p-type Schottky contact to an n-type Schottky contact in the WS2/graphene. The plane-averaged charge density difference proves that the interfacial charge transfer and the Fermi level shift are the reasons for determining the Schottky barrier transition in the WS2/graphene heterostructure. Our studies may prove to be instrumental in the future design and fabrication of van der Waals based field effect transistors.
      通信作者: 郭丽娟, lisa690544@163.com ; 项炬, xiang.ju@foxmail.com
    • 基金项目: 湖南省教育厅重点项目和青年项目(批准号: 17A024, 17B034)、新型药物制剂研发湖南省重点实验室培育基地(批准号: 2016TP1029)和长沙市杰出创新青年培养计划项目(批准号: kq1802024)资助的课题.
      Corresponding author: Guo Li-Juan, lisa690544@163.com ; Xiang Ju, xiang.ju@foxmail.com
    • Funds: Project supported by the Research Foundation of Education Bureau of Hunan Province, China (Grant Nos. 17A024, 17B034), the Hunan Key Laboratory Cultivation Base of Research and Development of Novel Pharmaceutical Preparations, China (Grant No. 2016TP1029), and the Construct Program of the Key Discipline in Hunan Province, the Training Program for Excellent Young Innovators of Changsha, China (Grant No. kq1802024).
    [1]

    Cao M S, Shu J C, Wang X X, Wang X, Zhang M, Yang H J, Fang X Y, Yuan J 2019 Ann. Phys. (Berlin) 2019 1800390Google Scholar

    [2]

    Wen B, Cao M S, Lu M M , Cao W Q, Shi H L, Liu J, Wang X X, Jin H B , Fang X Y, Wang W Z , Yuan J 2014 Adv. Mater. 26 3484Google Scholar

    [3]

    Cao M S, Wang X X, Cao W Q, Fang X Y, Wen B, Yuan J 2018 Small 14 1800987Google Scholar

    [4]

    Cao M S, Song W L, Hou Z L, Wen B, Yuan J 2010 Carbon 48 788Google Scholar

    [5]

    Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, Sun W, Chen Y S 2008 Adv. Mater. 20 3924Google Scholar

    [6]

    Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [7]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401Google Scholar

    [8]

    Zhao H, Guo Q S, Xia F N, Wang H 2015 Nanophotonics 4 128Google Scholar

    [9]

    Yang L Y, Sinitsyn N A, Chen W B, Yuan J T, Zhang J, Lou J, Crooker S A 2015 Nat. Phys. 11 830Google Scholar

    [10]

    Zeng H L, Liu G B, Dai J F, Yan Y J, Zhu B R, He R C, Xie L S, Xu J, Chen X H, Yao W, Cui X D 2013 Sci. Rep. 3 1608Google Scholar

    [11]

    Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C, Novoselov K S 2013 Science 340 1311Google Scholar

    [12]

    Georgiou T, Yang H F, Jalil R, Chapman J, Novoselov K S, Mishchenko A 2014 Dalton Trans. 43 10388Google Scholar

    [13]

    Chen K T, Chang S T H 2017 Vacuum 140 172Google Scholar

    [14]

    Cong C X, Shang J Z, Wang Y L, Yu T 2018 Adv. Opt. Mater. 6 1700767Google Scholar

    [15]

    Iqbal M W, Iqbal M Z, Khan M F 2016 RSC Adv. 6 24675Google Scholar

    [16]

    Yue Y, Chen J, Zhang Y, Ding S, Zhao F, Wang Y, Feng W 2018 ACS Appl. Mater. Interfaces DOI: 10.1021/acsami. 8b05885

    [17]

    Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar

    [18]

    Ma Y D, Dai Y, Guo M, Niu C W, Huang B B 2011 Nanoscale 3 3883Google Scholar

    [19]

    Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347Google Scholar

    [20]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [21]

    Lin X, Xu Y, Hakro A A, Hasan T, Hao R, Zhang B L, Chen H S 2013 J. Mater. Chem. C 1 1618Google Scholar

    [22]

    Xue J M, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo Herrero P, Leroy B J 2011 Nat. Mater. 10 282Google Scholar

    [23]

    Neek A M, Sadeghi A, Berdiyorov G R, Peeters F M 2013 Appl. Phys. Lett. 103 261904Google Scholar

    [24]

    Cai Y, Chu C P, Wei C M, Chou M Y 2013 Matter Mater. Phys. 88 245408Google Scholar

    [25]

    Zhang F, Li W, Ma Y Q, Tang Y N, Dai X Q 2017 RSC Adv. 7 29350Google Scholar

    [26]

    Tan H J, Xu W S, Sheng Y W, Lau C S, Fan Y, Chen Q, Wang X C, Zhou Y Q, Warner J H 2017 Adv. Mater. 29 1702917Google Scholar

    [27]

    危阳, 马新国, 祝林, 贺华, 黄楚云 2017 物理学报 66 087101Google Scholar

    Wei Y, Ma X G, Zhu L, He H, Huang C Y 2017 Acta Phys. Sin. 66 087101Google Scholar

    [28]

    Jin C J, Rasmussen F A, Thygesen K S 2015 J. Phys. Chem. C 119 19928Google Scholar

    [29]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 RSC Adv. 6 60271Google Scholar

    [30]

    Jiang J W 2015 Front. Phys. 10 287Google Scholar

    [31]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter. 14 2717Google Scholar

    [32]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [33]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [34]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [35]

    Ma X G, Hu J S, He H, Dong S J, Huang C Y, Chen X B 2018 ACS Appl. Nano Mater. 1 5507Google Scholar

    [36]

    Björkman T, Gulans A, Krasheninnikov A V, Nieminen R M 2012 Phys. Rev. Lett. 108 235502Google Scholar

    [37]

    Hu J S, Ji G P, Ma X G, He H, Huang C Y 2018 Appl. Surf. Sci. 440 35Google Scholar

    [38]

    Ding Y, Wang Y L, Ni J, Shi L, Shi S Q, Tang W H 2011 Physica B 406 2254Google Scholar

    [39]

    Du A J, Sanvito S, Li Z, Wang D W, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z H, Amal R, Smith S C 2012 J. Am. Chem. Soc. 134 4393Google Scholar

    [40]

    Zhou W, Zou X L, Najmaei S 2013 Nano Lett. 13 2615Google Scholar

    [41]

    Li X E, Basile L, Huang B 2015 ACS Nano 9 8078Google Scholar

    [42]

    Wang Q H, Kalantar-Zadeh K, Kis A 2012 Nature Nanotechnol. 7 699Google Scholar

    [43]

    Zhang Y W, Li H, Wang L, Xie X M, Zhang S L, Liu R, Qiu Z J 2015 Sci. Reports 5 7938Google Scholar

    [44]

    Fang X Y, Yu X X, Zheng H M, Jin B, Wang L, Cao M S 2015 Phys. Lett. A 379 2245Google Scholar

  • 图 1  单层二硫化钨/石墨烯异质结匹配模型的顶视图 (a)单层二硫化钨3 × 3 × 1超胞与石墨烯4 × 4 × 1超胞的匹配模型; (b)单层二硫化钨4 × 4 × 1超胞与石墨烯5 × 5 × 1超胞的匹配模型

    Fig. 1.  Top views of two match configurations of monolayer WS2/graphene heterostructure: (a) Match configuration between 3 × 3 × 1 lateral periodicity of monolayer WS2 sheet and 4 × 4 × 1 lateral periodicity of graphene; (b) match configuration between 4 × 4 × 1 lateral periodicity of monolayer WS2 sheet and 5 × 5 × 1 lateral periodicity of graphene.

    图 2  单层二硫化钨(a)、石墨烯(b)和二硫化钨/石墨烯异质结(c)的能带结构, 其中费米能级处在0 eV, 用红色的虚线表示

    Fig. 2.  Energy band structures of (a) WS2 monolayer, (b) graphene and (c) WS2/graphene heterostructure. The Fermi levels are set to zero and marked by red dashed lines.

    图 3  二硫化钨/石墨烯异质结的总态密度以及相应的分态密度

    Fig. 3.  Calculated total density of states (TDOS) and the corresponding partial density of states (PDOS) of WS2/graphene heterostructure.

    图 4  二硫化钨/石墨烯异质结的三维电子密度差分图 (a)侧视图; (b)顶视图

    Fig. 4.  Three-dimensional charge density difference plots WS2/graphene heterostructure: (a) Side view; (b) top view.

    图 5  不同层间距下的二硫化钨/石墨烯异质结的能带图, 其中蓝色曲线代表石墨烯部分的贡献 (a)−(j)分别代表层间距为2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2 Å, 费米能级处在0 eV, 用红色虚线表示

    Fig. 5.  Band structures of WS2/graphene heterostructure under different interface distances. Blue curves denote the contributions from graphene. Panels (a)−(j) correspond to the interface distances of 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2 Å, respectively. The Fermi level is set to zero and marked by red dotted line.

    图 6  二硫化钨/石墨烯异质结中二硫化钨部分的导带底、价带顶和带隙在不同层间距的值

    Fig. 6.  Conduction band minimum (CBM), valence band maximum (VBM) and band gap of WS2 monolayer in the WS2/graphene heterostructure as a function of interfacial distance.

    图 7  不同层间距下二硫化钨/石墨烯异质结沿着Z方向的平面差分电荷密度图

    Fig. 7.  Plots of the plane-averaged electron density difference along the direction perpendicular to the interface of the WS2/graphene heterostructure under different interface distances of 2.4 Å to 4.2 Å, respectively.

  • [1]

    Cao M S, Shu J C, Wang X X, Wang X, Zhang M, Yang H J, Fang X Y, Yuan J 2019 Ann. Phys. (Berlin) 2019 1800390Google Scholar

    [2]

    Wen B, Cao M S, Lu M M , Cao W Q, Shi H L, Liu J, Wang X X, Jin H B , Fang X Y, Wang W Z , Yuan J 2014 Adv. Mater. 26 3484Google Scholar

    [3]

    Cao M S, Wang X X, Cao W Q, Fang X Y, Wen B, Yuan J 2018 Small 14 1800987Google Scholar

    [4]

    Cao M S, Song W L, Hou Z L, Wen B, Yuan J 2010 Carbon 48 788Google Scholar

    [5]

    Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, Sun W, Chen Y S 2008 Adv. Mater. 20 3924Google Scholar

    [6]

    Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [7]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401Google Scholar

    [8]

    Zhao H, Guo Q S, Xia F N, Wang H 2015 Nanophotonics 4 128Google Scholar

    [9]

    Yang L Y, Sinitsyn N A, Chen W B, Yuan J T, Zhang J, Lou J, Crooker S A 2015 Nat. Phys. 11 830Google Scholar

    [10]

    Zeng H L, Liu G B, Dai J F, Yan Y J, Zhu B R, He R C, Xie L S, Xu J, Chen X H, Yao W, Cui X D 2013 Sci. Rep. 3 1608Google Scholar

    [11]

    Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C, Novoselov K S 2013 Science 340 1311Google Scholar

    [12]

    Georgiou T, Yang H F, Jalil R, Chapman J, Novoselov K S, Mishchenko A 2014 Dalton Trans. 43 10388Google Scholar

    [13]

    Chen K T, Chang S T H 2017 Vacuum 140 172Google Scholar

    [14]

    Cong C X, Shang J Z, Wang Y L, Yu T 2018 Adv. Opt. Mater. 6 1700767Google Scholar

    [15]

    Iqbal M W, Iqbal M Z, Khan M F 2016 RSC Adv. 6 24675Google Scholar

    [16]

    Yue Y, Chen J, Zhang Y, Ding S, Zhao F, Wang Y, Feng W 2018 ACS Appl. Mater. Interfaces DOI: 10.1021/acsami. 8b05885

    [17]

    Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar

    [18]

    Ma Y D, Dai Y, Guo M, Niu C W, Huang B B 2011 Nanoscale 3 3883Google Scholar

    [19]

    Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347Google Scholar

    [20]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [21]

    Lin X, Xu Y, Hakro A A, Hasan T, Hao R, Zhang B L, Chen H S 2013 J. Mater. Chem. C 1 1618Google Scholar

    [22]

    Xue J M, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo Herrero P, Leroy B J 2011 Nat. Mater. 10 282Google Scholar

    [23]

    Neek A M, Sadeghi A, Berdiyorov G R, Peeters F M 2013 Appl. Phys. Lett. 103 261904Google Scholar

    [24]

    Cai Y, Chu C P, Wei C M, Chou M Y 2013 Matter Mater. Phys. 88 245408Google Scholar

    [25]

    Zhang F, Li W, Ma Y Q, Tang Y N, Dai X Q 2017 RSC Adv. 7 29350Google Scholar

    [26]

    Tan H J, Xu W S, Sheng Y W, Lau C S, Fan Y, Chen Q, Wang X C, Zhou Y Q, Warner J H 2017 Adv. Mater. 29 1702917Google Scholar

    [27]

    危阳, 马新国, 祝林, 贺华, 黄楚云 2017 物理学报 66 087101Google Scholar

    Wei Y, Ma X G, Zhu L, He H, Huang C Y 2017 Acta Phys. Sin. 66 087101Google Scholar

    [28]

    Jin C J, Rasmussen F A, Thygesen K S 2015 J. Phys. Chem. C 119 19928Google Scholar

    [29]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 RSC Adv. 6 60271Google Scholar

    [30]

    Jiang J W 2015 Front. Phys. 10 287Google Scholar

    [31]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter. 14 2717Google Scholar

    [32]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [33]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [34]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [35]

    Ma X G, Hu J S, He H, Dong S J, Huang C Y, Chen X B 2018 ACS Appl. Nano Mater. 1 5507Google Scholar

    [36]

    Björkman T, Gulans A, Krasheninnikov A V, Nieminen R M 2012 Phys. Rev. Lett. 108 235502Google Scholar

    [37]

    Hu J S, Ji G P, Ma X G, He H, Huang C Y 2018 Appl. Surf. Sci. 440 35Google Scholar

    [38]

    Ding Y, Wang Y L, Ni J, Shi L, Shi S Q, Tang W H 2011 Physica B 406 2254Google Scholar

    [39]

    Du A J, Sanvito S, Li Z, Wang D W, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z H, Amal R, Smith S C 2012 J. Am. Chem. Soc. 134 4393Google Scholar

    [40]

    Zhou W, Zou X L, Najmaei S 2013 Nano Lett. 13 2615Google Scholar

    [41]

    Li X E, Basile L, Huang B 2015 ACS Nano 9 8078Google Scholar

    [42]

    Wang Q H, Kalantar-Zadeh K, Kis A 2012 Nature Nanotechnol. 7 699Google Scholar

    [43]

    Zhang Y W, Li H, Wang L, Xie X M, Zhang S L, Liu R, Qiu Z J 2015 Sci. Reports 5 7938Google Scholar

    [44]

    Fang X Y, Yu X X, Zheng H M, Jin B, Wang L, Cao M S 2015 Phys. Lett. A 379 2245Google Scholar

  • [1] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 不同相NbS2与GeS2构成的二维金属-半导体异质结的电接触性质. 物理学报, 2024, 73(13): 137102. doi: 10.7498/aps.73.20240530
    [2] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究. 物理学报, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [3] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [4] 房晓南, 杜颜伶, 吴晨雨, 刘静. (SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究. 物理学报, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [5] 梁前, 钱国林, 罗祥燕, 梁永超, 谢泉. 外电场和双轴应变对MoSH/WSi2N4肖特基结势垒的调控. 物理学报, 2022, 71(21): 217301. doi: 10.7498/aps.71.20220882
    [6] 许佳玲, 贾利云, 刘超, 吴佺, 赵领军, 马丽, 侯登录. Li(Na)AuS体系拓扑绝缘体材料的能带结构. 物理学报, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [7] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选. 物理学报, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [8] 马浩浩, 张显斌, 魏旭艳, 曹佳萌. 非金属元素掺杂二硒化钨/石墨烯异质结对其肖特基调控的理论研究. 物理学报, 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [9] 李小影, 黄灿, 朱岩, 李晋斌, 樊济宇, 潘燕飞, 施大宁, 马春兰. -(Zn,Cr)S(111)表面上的Dzyaloshinsky-Moriya作用:第一性原理计算. 物理学报, 2018, 67(13): 137101. doi: 10.7498/aps.67.20180342
    [10] 戴中华, 钱一辰, 谢耀平, 胡丽娟, 李晓娣, 马海涛. 非对称双轴张应变对锗能带的影响. 物理学报, 2017, 66(16): 167101. doi: 10.7498/aps.66.167101
    [11] 颜送灵, 唐黎明, 赵宇清. 不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究. 物理学报, 2016, 65(7): 077301. doi: 10.7498/aps.65.077301
    [12] 李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃. 掺铝3C-SiC电子结构的第一性原理计算及其微波介电性能. 物理学报, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [13] 朱兴华, 张海波, 杨定宇, 王治国, 祖小涛. C/SiC纳米管异质结电子结构的第一性原理研究. 物理学报, 2010, 59(11): 7961-7965. doi: 10.7498/aps.59.7961
    [14] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究. 物理学报, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [15] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [16] 孔祥兰, 侯芹英, 苏希玉, 齐延华, 支晓芬. Ba0.5Sr0.5TiO3电子结构和光学性质的第一性原理研究. 物理学报, 2009, 58(6): 4128-4131. doi: 10.7498/aps.58.4128
    [17] 宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜. 第一性原理研究应变Si/(111)Si1-xGex能带结构. 物理学报, 2008, 57(9): 5918-5922. doi: 10.7498/aps.57.5918
    [18] 全知觉, 孙立忠, 叶振华, 李志锋, 陆 卫. 碲镉汞异质结能带结构的优化设计. 物理学报, 2006, 55(7): 3611-3616. doi: 10.7498/aps.55.3611
    [19] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [20] 刘 红, 陈将伟. 纳米碳管异质结的结构及其电学性质. 物理学报, 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
计量
  • 文章访问数:  13809
  • PDF下载量:  358
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-04
  • 修回日期:  2019-03-10
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回