-
The resolution of traditional far-field imaging system is generally restricted by half of the wavelength of incident light due to the diffraction limit. The more specific reason is that evanescent waves carrying sub-wavelength information cannot propagate in the far field and make no contribution to the imaging. However, higher imaging resolution is required in practical applications. To realize the far-field super-resolution imaging, the imaging system should be able to collect both propagating waves and evanescent waves. Many designs have been proposed to solve this issue. In 2007, a far-field superlens was proposed by Liu et al. (Liu Z W, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X 2007 Nano Lett. 7 403) to realize far-field super-resolution in optical range, which consisted of a silver film and a nanoscale grating coupler. The silver film was used to amplify the evanescent waves, which were then converted into propagating waves by the sub-wavelength gratings. However, the special material properties limit the freedom of design. In microwave band, the incident components can be converted into Bloch modes by the resonant metalens, which consists of subwavelength resonators, and then be radiated to far field. Nevertheless, Green function between antenna and target is necessary, which is difficult to obtain due to the complex and even time-dependent imaging environment in practical applications, especially for super-resolution imaging system. It has been demonstrated in recent research that frequency information can be associated with spatial information of imaging target by localization resonant modes. Therefore, super-resolution imaging can be realized based on frequency information, without using Green function. Thus, a novel microstructure array is proposed to realize the far-field super-resolution scanning imaging based on a fractal resonator. The fractal resonator can work at several frequencies because of the self-similarity, which provides higher selectivity according to practical conditions. Several working statuses can be obtained for the resonator by adding photoconductive semiconductor switches, which are controlled by laser. On account of localization mode resonance, the array can realize the conversion between evanescent waves and propagating waves. Then with the help of antennas in the far-field to receive the frequency information, the location of imaging source can be confirmed according to the spectrum. Then by using the magnitude of resonant peak, sub-wavelength image can be reconstructed without using Green function. To verify the super-resolution scanning imaging characteristics of the array, an imaging simulation of “laugh face”-shaped target is performed. The image is reconstructed very well and the resolution determined by the period of the array is 20 mm, corresponding to λ/10. In view of the particularity of proposed fractal resonator, a novel scanning method is proposed. By combining the first and the third resonance, the imaging efficiency can be well improved compared with by the traditional point-by-point scanning method.
[1] Merlin R 2007 Science 317 927Google Scholar
[2] Grbic A, Jiang L, Merlin R 2008 Science 320 511Google Scholar
[3] Grbic A, Merlin R 2008 IEEE Trans. Antennas Propag. 56 3159Google Scholar
[4] 祝生祥 2000 光学仪器 22 34Google Scholar
Zhu S X 2000 Opt. Instrum. 22 34Google Scholar
[5] 波恩M, 沃尔夫E 著 (杨葭荪 译) 1999 光学原理 (北京: 电子工业出版社) 第342−427页
Born M, Wolf E (translated by Yang J S) 1999 Principles of Optics (Beijing: Electronic Industry Press) pp342−427 (in Chinese)
[6] Pohl D W, Denk W, Lanz M 1984 Appl. Phys. Lett. 44 651Google Scholar
[7] Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar
[8] Pendry J B, Ramakrishna S A 2003 J. Phys.: Condens. Matter 15 6345Google Scholar
[9] Nicholas F, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar
[10] 杨晨, 张洪欣, 王海侠, 徐楠, 许媛媛, 黄丽玉, 张可欣 2012 物理学报 61 164101Google Scholar
Yang C, Zhang H X, Wang H X, Xu N, Xu Y Y, Huang L Y, Zhang K X 2012 Acta Phys. Sin. 61 164101Google Scholar
[11] Liu Z W, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X 2007 Nano Lett. 7 403Google Scholar
[12] Zhang Z Y, Du J L, Guo Y K, Niu X J, Li M, Luo X G, Du C L 2009 Chin. Phys. Lett. 26 014211Google Scholar
[13] Lemoult F, Lerosey G, de Rosny J, Fink M 2010 Phys. Rev. Lett. 104 203901Google Scholar
[14] Lemoult F, Fink M, Lerosey G 2011 Waves Random and Complex Media 21 614Google Scholar
[15] Ourir A, Lerosey G, Lemoult F, Fink M, de Rosny J 2012 Appl. Phys. Lett. 101 111102Google Scholar
[16] Gao Q, Wang B Z, Wang X H 2015 IEEE Trans. Antennas Propag. 63 5586Google Scholar
[17] Jouvaud C, Ourir A, de Rosny J 2014 Appl. Phys. Lett. 104 243507Google Scholar
[18] 高强 2018 博士学位论文 (成都: 电子科技大学)
Gao Q 2018 Ph. D. Dessertation (Chengdu: University of Electronics Science and Technology of China) (in Chinese)
[19] 龚志双, 王秉中, 王任 2018 物理学报 67 084101Google Scholar
Gong Z S, Wang B Z, Wang R 2018 Acta Phys. Sin. 67 084101Google Scholar
[20] 周洪澄, 王秉中, 丁帅, 欧海燕 2013 物理学报 62 114101Google Scholar
Zhou H C, Wang B Z, Ding S, Ou H Y 2013 Acta Phys. Sin. 62 114101Google Scholar
[21] Yao J, Ye Y H 2012 Chin. Phys. Lett. 29 047802Google Scholar
[22] Wang P W, Li W, Wang C L, Bo Z W, Gong W L 2018 Chin. Phys. B 27 074202Google Scholar
[23] Duan J H, Chen R K, Chen J N 2017 Chin. Phys. B 26 117802Google Scholar
[24] Wang H, Brandl D W, Le F, Nordlander P, Halas N J 2006 Nano Lett. 6 827Google Scholar
[25] Wang R, Wang B Z, Gong Z S, Ding X 2015 Sci. Rep. 5 11131Google Scholar
[26] Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar
[27] Nordlander P, Oubre C, Prodan E, Li K, Stockman M I 2004 Nano Lett. 4 899Google Scholar
-
-
[1] Merlin R 2007 Science 317 927Google Scholar
[2] Grbic A, Jiang L, Merlin R 2008 Science 320 511Google Scholar
[3] Grbic A, Merlin R 2008 IEEE Trans. Antennas Propag. 56 3159Google Scholar
[4] 祝生祥 2000 光学仪器 22 34Google Scholar
Zhu S X 2000 Opt. Instrum. 22 34Google Scholar
[5] 波恩M, 沃尔夫E 著 (杨葭荪 译) 1999 光学原理 (北京: 电子工业出版社) 第342−427页
Born M, Wolf E (translated by Yang J S) 1999 Principles of Optics (Beijing: Electronic Industry Press) pp342−427 (in Chinese)
[6] Pohl D W, Denk W, Lanz M 1984 Appl. Phys. Lett. 44 651Google Scholar
[7] Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar
[8] Pendry J B, Ramakrishna S A 2003 J. Phys.: Condens. Matter 15 6345Google Scholar
[9] Nicholas F, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar
[10] 杨晨, 张洪欣, 王海侠, 徐楠, 许媛媛, 黄丽玉, 张可欣 2012 物理学报 61 164101Google Scholar
Yang C, Zhang H X, Wang H X, Xu N, Xu Y Y, Huang L Y, Zhang K X 2012 Acta Phys. Sin. 61 164101Google Scholar
[11] Liu Z W, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X 2007 Nano Lett. 7 403Google Scholar
[12] Zhang Z Y, Du J L, Guo Y K, Niu X J, Li M, Luo X G, Du C L 2009 Chin. Phys. Lett. 26 014211Google Scholar
[13] Lemoult F, Lerosey G, de Rosny J, Fink M 2010 Phys. Rev. Lett. 104 203901Google Scholar
[14] Lemoult F, Fink M, Lerosey G 2011 Waves Random and Complex Media 21 614Google Scholar
[15] Ourir A, Lerosey G, Lemoult F, Fink M, de Rosny J 2012 Appl. Phys. Lett. 101 111102Google Scholar
[16] Gao Q, Wang B Z, Wang X H 2015 IEEE Trans. Antennas Propag. 63 5586Google Scholar
[17] Jouvaud C, Ourir A, de Rosny J 2014 Appl. Phys. Lett. 104 243507Google Scholar
[18] 高强 2018 博士学位论文 (成都: 电子科技大学)
Gao Q 2018 Ph. D. Dessertation (Chengdu: University of Electronics Science and Technology of China) (in Chinese)
[19] 龚志双, 王秉中, 王任 2018 物理学报 67 084101Google Scholar
Gong Z S, Wang B Z, Wang R 2018 Acta Phys. Sin. 67 084101Google Scholar
[20] 周洪澄, 王秉中, 丁帅, 欧海燕 2013 物理学报 62 114101Google Scholar
Zhou H C, Wang B Z, Ding S, Ou H Y 2013 Acta Phys. Sin. 62 114101Google Scholar
[21] Yao J, Ye Y H 2012 Chin. Phys. Lett. 29 047802Google Scholar
[22] Wang P W, Li W, Wang C L, Bo Z W, Gong W L 2018 Chin. Phys. B 27 074202Google Scholar
[23] Duan J H, Chen R K, Chen J N 2017 Chin. Phys. B 26 117802Google Scholar
[24] Wang H, Brandl D W, Le F, Nordlander P, Halas N J 2006 Nano Lett. 6 827Google Scholar
[25] Wang R, Wang B Z, Gong Z S, Ding X 2015 Sci. Rep. 5 11131Google Scholar
[26] Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar
[27] Nordlander P, Oubre C, Prodan E, Li K, Stockman M I 2004 Nano Lett. 4 899Google Scholar
计量
- 文章访问数: 6644
- PDF下载量: 69
- 被引次数: 0