-
将高功率激光注入单孔球形银黑腔, 产生的高温辐射源能够驱动超声速冲击波, 在实验室模拟各种天体物理现象. 利用神光Ⅲ原型装置上四路3.2 kJ激光, 聚焦注入Φ800 μm、注入口Φ650 μm的球形银腔, 可以产生峰值温度为240 eV的高温辐射源, 驱动剩余球壳在气体区产生超声速冲击波. 实验结果显示, 银腔的激光-X光转换效率为0.68, 银反照率为0.83. 散射光份额约为15%, 超热电子份额小于1%, 从注入口漏失的辐射流约占总能量的30%, 从厚度5.6 μm的Ag和10 μm的CH球壳漏失的辐射流约占总能量的9%, 约45%的能量转换为剩余球壳的动能和内能. 黑腔等离子体约在950 ps开始聚心, 基本不会影响1 ns脉宽激光注入. 在神光Ⅲ原型装置开展的银球腔激光能量耦合和分配实验, 为后续超声速冲击波实验奠定了基础.The matter can be instantaneously heated up to a high energy density state by the high power laser. When the high power laser is injected into silver spherical hohlraum, the high temperature radiation source formed in the hohlraum can drive the high velocity blast wave in the laboratory to study various astrophysical phenomena such as supernova remnants, stellar jets, etc. As the basis of laser driven blast wave experiments, the first experimental results of energy coupling and partitioning of silver spherical hohlraum with one laser entrance hole (LEH) on Shenguang Ⅲ prototype laser facility are introduced in this work. Four beams with 3.2 kJ of laser energy in a 1ns square laser pulse from the upper hemisphere are used to heat the silver spherical hohlraum targets. The silver spherical hohlraum targets are 800 μm-diameter and 650 μm-diameter LEH, and are fabricated by electroforming silver onto an acrylic mandrel. The laser coupling and partitioning to the targets are investigated by using the optical and X-ray diagnostics. The experimental results show that the radiation temperature is beyond 240 eV, the laser-to-X-ray conversion efficiency of silver hohlraum is 0.68 and the silver albedo is 0.83. With the driving of the high temperature radiation source, most of laser energy is coupled to the residual shell, and the high velocity blast wave can be generated. The laser energy not coupled to the target is lost through scattering light, emitting hot electrons and radiating X-rays. The experimental results show that the fraction of energy lost due to the scattering light is 15%, that due to emitting the total hot electrons is less than 1%, almost 30% of the laser energy is lost from the LEH by radiating the X-ray flux, almost 9% of the laser energy leaks from the spherical shell consisting of the 5.6 μm-thick Ag layer and 10 μm-thick CH layer through the X-ray radiation flux, and 45% of the laser energy is converted into the kinetic energy and internal energy of the remaining spherical shell. Therefore, more than 50% of the laser energy will be used to drive the high velocity blast wave in the subsequent experiments. After 950 ps, the silver plasma is concentrated in the center of the silver spherical hohlraum, which does not affect the injection of 1ns laser. The experiment on energy coupling and partitioning of a spherical silver hohlraum laser is carried out for the first time on Shenguang Ⅲ prototype laser facility, which lays a foundation for the subsequent experiments on laser driven blast wave.
[1] Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755Google Scholar
[2] Sanz J, Bouquet S E, Michaut C, Miniere J 2016 Phys. Plasmas 23 062114Google Scholar
[3] Kuranz C C, Park H S, Remington B A, et al. 2011 Astrophys. Space Sci. 336 207Google Scholar
[4] Edens A D, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L, Ditmire T 2010 Phys. Plasmas 17 112104Google Scholar
[5] Hansen J F, Edwards M J, Froula D H, Gregori G, Edens A D, Ditmire T 2006 Phys. Plasmas 13 022105Google Scholar
[6] Meinecke J, Doyle H W, Miniati F, et al. 2014 Nat. Phys. 10 520Google Scholar
[7] Shigemori K, Ditmire T, Remington B A, Yanovsky V, Ryutov D, Estabrook K, Edwards M J, MacKinnon A J, Rubenchik A M, Keilty K A, Liang E 2000 Astrophys. J. 533 L159Google Scholar
[8] Edwards M J, MacKinnon A J, Zweiback J, Shigemori K, Ryutov D, Rubenchik A M, Keilty K A, Liang E, Remington B A, Ditmire T 2001 Phys. Rev. Lett. 87 085004Google Scholar
[9] Bouquet S, Stehle C, Koenig M, Chieze J P, Benuzzi-Mounaix A, Batani D, Leygnac S, Fleury X, Merdji H, Michaut C, Thais F, Grandjouan N, Hall T, Henry E, Malka V, Lafon J P 2004 Phys. Rev. Lett. 92 225001Google Scholar
[10] Grun J, Stamper J, Manka C, Resnic J, Burris R, Ripin B H 1991 Appl. Phys. Lett. 59 246Google Scholar
[11] Edens A D, Ditmire T, Hansen J F, Edwards M J, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L 2004 Phys. Plasmas 11 4968Google Scholar
[12] Tubman E R, Scott R H H, Doyle H W, Meinecke J, Ahmed H, Alraddadi R A B, Bolis R, Cross J E, Crowston R, Doria D, Lamb D, Reville B, Robinson A P L, Tzeferacos P, Borghesi M, Gregori G, Woolsey N C 2017 Phys. Plasmas 24 103124Google Scholar
[13] Fournier K B, Brown C G, May M J, Compton S, Walton O R, Shingleton N, Kane J O, Holtmeier G, Loey H, Mirkarimi P B, Dunlop WH, Guyton R L, Huffman E 2014 Rev. Sci. Instrum. 85 095119Google Scholar
[14] He X T, Zhang W Y 2007 Eur. Phys. J. D 44 227Google Scholar
[15] Giraldez E M, Mirkarimi P B, Emig J A, et al. 2013 Fusion Sci. Technol. 63 242Google Scholar
[16] Schneider M B, Jones O S, Meezan N B, et al. 2010 Rev. Sci. Instrum. 81 10E538Google Scholar
[17] 王峰, 彭晓世, 杨冬, 李志超, 徐涛, 魏惠月, 刘慎业 2013 物理学报 62 175202Google Scholar
Wang F, Peng X S, Yang D, Li Z C, Xu T, Wei H Y, Liu S Y 2013 Acta Phys. Sin. 62 175202Google Scholar
[18] Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504Google Scholar
[19] Dewald E L, Campbell K M, Turner R E, Holder J P, Landen O L, Glenzer S H, Kauffman R L, Suter L J, Landon M, Rhodes M, Lee D 2004 Rev. Sci. Instrum. 75 3759Google Scholar
[20] 尚万里, 朱托, 熊刚, 赵阳, 张文海, 易荣清, 况龙钰, 曹磊峰, 高宇林, 杨家敏, 赵屹东, 崔明启, 郑雷, 韩勇, 周克瑾, 马陈燕 2011 物理学报 60 034216Google Scholar
Shang W L, Zhu T, Xiong G, Zhao Y, Zhang W H, Yi R Q, Kuang L Y, Cao L F, Gao Y L, Yang J M, Zhao Y D, Cui M Q, Zheng L, Han Y, Zhou K J, Ma C Y 2011 Acta Phys. Sin. 60 034216Google Scholar
[21] Mcdonald J W, Kauffman R L, Celeste J R, Rhodes M A, Lee F D, Suter L J, Lee A P, Foster J M, Slark G 2004 Rev. Sci. Instrum. 75 3753Google Scholar
[22] 曹柱荣, 缪文勇, 董建军, 袁永腾, 杨正华, 袁铮, 张海鹰, 刘慎业, 江少恩, 丁永坤 2012 物理学报 61 075213Google Scholar
Cao Z R, Miao W Y, Dong J J, Yuan Y T, Yang Z H, Yuan Z, Zhang H Y, Liu S Y, Jiang S E, Ding Y K 2012 Acta Phys. Sin. 61 075213Google Scholar
[23] 李三伟, 杨冬, 李欣, 等 2018 中国科学: 物理学 力学 天文学 48 065202
Li S W, Yang D, Li X, et al. 2018 Sci. China-Phys. Mech. Astron. 48 065202
[24] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar
[25] May M J, Fournier K B, Brown C G, Dunlop W H, Kane J O, Mirkarimi P B, Moody J, Patterson J R, Schneider M, Widmann K, Giraldez E 2014 High Energy Density Phys. 11 45Google Scholar
[26] Kemp G E, Colvin J D, Fournier K B, May M J, Barrios M A, Patel M V, Scott H A, Marinak M M 2015 Phys. Plasmas 22 053110Google Scholar
-
-
[1] Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755Google Scholar
[2] Sanz J, Bouquet S E, Michaut C, Miniere J 2016 Phys. Plasmas 23 062114Google Scholar
[3] Kuranz C C, Park H S, Remington B A, et al. 2011 Astrophys. Space Sci. 336 207Google Scholar
[4] Edens A D, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L, Ditmire T 2010 Phys. Plasmas 17 112104Google Scholar
[5] Hansen J F, Edwards M J, Froula D H, Gregori G, Edens A D, Ditmire T 2006 Phys. Plasmas 13 022105Google Scholar
[6] Meinecke J, Doyle H W, Miniati F, et al. 2014 Nat. Phys. 10 520Google Scholar
[7] Shigemori K, Ditmire T, Remington B A, Yanovsky V, Ryutov D, Estabrook K, Edwards M J, MacKinnon A J, Rubenchik A M, Keilty K A, Liang E 2000 Astrophys. J. 533 L159Google Scholar
[8] Edwards M J, MacKinnon A J, Zweiback J, Shigemori K, Ryutov D, Rubenchik A M, Keilty K A, Liang E, Remington B A, Ditmire T 2001 Phys. Rev. Lett. 87 085004Google Scholar
[9] Bouquet S, Stehle C, Koenig M, Chieze J P, Benuzzi-Mounaix A, Batani D, Leygnac S, Fleury X, Merdji H, Michaut C, Thais F, Grandjouan N, Hall T, Henry E, Malka V, Lafon J P 2004 Phys. Rev. Lett. 92 225001Google Scholar
[10] Grun J, Stamper J, Manka C, Resnic J, Burris R, Ripin B H 1991 Appl. Phys. Lett. 59 246Google Scholar
[11] Edens A D, Ditmire T, Hansen J F, Edwards M J, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L 2004 Phys. Plasmas 11 4968Google Scholar
[12] Tubman E R, Scott R H H, Doyle H W, Meinecke J, Ahmed H, Alraddadi R A B, Bolis R, Cross J E, Crowston R, Doria D, Lamb D, Reville B, Robinson A P L, Tzeferacos P, Borghesi M, Gregori G, Woolsey N C 2017 Phys. Plasmas 24 103124Google Scholar
[13] Fournier K B, Brown C G, May M J, Compton S, Walton O R, Shingleton N, Kane J O, Holtmeier G, Loey H, Mirkarimi P B, Dunlop WH, Guyton R L, Huffman E 2014 Rev. Sci. Instrum. 85 095119Google Scholar
[14] He X T, Zhang W Y 2007 Eur. Phys. J. D 44 227Google Scholar
[15] Giraldez E M, Mirkarimi P B, Emig J A, et al. 2013 Fusion Sci. Technol. 63 242Google Scholar
[16] Schneider M B, Jones O S, Meezan N B, et al. 2010 Rev. Sci. Instrum. 81 10E538Google Scholar
[17] 王峰, 彭晓世, 杨冬, 李志超, 徐涛, 魏惠月, 刘慎业 2013 物理学报 62 175202Google Scholar
Wang F, Peng X S, Yang D, Li Z C, Xu T, Wei H Y, Liu S Y 2013 Acta Phys. Sin. 62 175202Google Scholar
[18] Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504Google Scholar
[19] Dewald E L, Campbell K M, Turner R E, Holder J P, Landen O L, Glenzer S H, Kauffman R L, Suter L J, Landon M, Rhodes M, Lee D 2004 Rev. Sci. Instrum. 75 3759Google Scholar
[20] 尚万里, 朱托, 熊刚, 赵阳, 张文海, 易荣清, 况龙钰, 曹磊峰, 高宇林, 杨家敏, 赵屹东, 崔明启, 郑雷, 韩勇, 周克瑾, 马陈燕 2011 物理学报 60 034216Google Scholar
Shang W L, Zhu T, Xiong G, Zhao Y, Zhang W H, Yi R Q, Kuang L Y, Cao L F, Gao Y L, Yang J M, Zhao Y D, Cui M Q, Zheng L, Han Y, Zhou K J, Ma C Y 2011 Acta Phys. Sin. 60 034216Google Scholar
[21] Mcdonald J W, Kauffman R L, Celeste J R, Rhodes M A, Lee F D, Suter L J, Lee A P, Foster J M, Slark G 2004 Rev. Sci. Instrum. 75 3753Google Scholar
[22] 曹柱荣, 缪文勇, 董建军, 袁永腾, 杨正华, 袁铮, 张海鹰, 刘慎业, 江少恩, 丁永坤 2012 物理学报 61 075213Google Scholar
Cao Z R, Miao W Y, Dong J J, Yuan Y T, Yang Z H, Yuan Z, Zhang H Y, Liu S Y, Jiang S E, Ding Y K 2012 Acta Phys. Sin. 61 075213Google Scholar
[23] 李三伟, 杨冬, 李欣, 等 2018 中国科学: 物理学 力学 天文学 48 065202
Li S W, Yang D, Li X, et al. 2018 Sci. China-Phys. Mech. Astron. 48 065202
[24] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar
[25] May M J, Fournier K B, Brown C G, Dunlop W H, Kane J O, Mirkarimi P B, Moody J, Patterson J R, Schneider M, Widmann K, Giraldez E 2014 High Energy Density Phys. 11 45Google Scholar
[26] Kemp G E, Colvin J D, Fournier K B, May M J, Barrios M A, Patel M V, Scott H A, Marinak M M 2015 Phys. Plasmas 22 053110Google Scholar
计量
- 文章访问数: 6662
- PDF下载量: 34
- 被引次数: 0