搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁超材料吸波体的研究进展

王彦朝 许河秀 王朝辉 王明照 王少杰

引用本文:
Citation:

电磁超材料吸波体的研究进展

王彦朝, 许河秀, 王朝辉, 王明照, 王少杰

Research progress of electromagnetic metamaterial absorbers

Wang Yan-Zhao, Xu He-Xiu, Wang Chao-Hui, Wang Ming-Zhao, Wang Shao-Jie
PDF
HTML
导出引用
  • 电磁吸波技术在军用和民用领域得到了广泛应用, 但传统吸波技术不能满足现代吸波材料新的需求, 基于超材料的吸波体具有结构简单、轻薄、吸收率高等优点, 并可以实现对电磁波的灵活调控, 使得电磁吸波领域获得了飞速发展. 本文针对电磁超材料吸波研究进行了综述, 首先介绍了电磁超材料吸波方法与机理, 指出了研究中遇到的瓶颈问题. 其次针对吸波关键技术难题分别从多频及宽频带吸波、极化和角度不敏感吸波、动态可调吸波三个方面介绍了目前电磁超材料吸波体的研究进展. 尽管研究学者们在超材料吸波方向已做了很多工作, 仍面临着诸多问题和挑战. 为了更好地预示未来研究, 本文从高性能、多功能、新三维结构三个角度对超材料吸波体的研究方向进行了展望, 包括突破波长限制的低频超薄宽带超材料吸波体、能应对复杂环境的多功能集成超材料吸波体以及随3D打印技术而兴起的新型三维结构超材料吸波体. 最后结合超材料在隐身领域的应用进一步总结了超材料吸波应用研究的发展趋势.
    Electromagnetic absorbing technology can effectively suppress the radiation of electromagnetic waves, and has been widely used in military and civilian fields. However, traditional absorbing technology cannot meet the new requirements for modern absorbing materials. The advent of metamaterials provides a solution for this problem Metamaterial absorber has the advantages of simple structure, light weight, high absorption rate, and can realize the flexible control of electromagnetic waves, which has led the electromagnetic absorption research to rapidly develop. In this paper, the research and development of using metamaterials to absorb electromagnetic wave is reviewed. Firstly, the principle, implementation, and presently existing bottlenecks of electromagnetic wave absorption in using metamaterials are outlined. Secondly, recent progress of the aforementioned key issues in three aspects is introduced, including multi-band and broadband, polarization and angle independence, and dynamic tunability. Several typical methods of making metamaterial absorbers are illustrated here. Generally speaking, the prerequisite of broadband metamaterial absorbers is to provide multiple resonances that are close enough to each other. The structure with multiple rotationally symmetric geometry is helpful in achieving polarization- and angle-insensitive properties. The flexible control of absorption performance can be realized by introducing lumped elements such as resistances, capacitances, and diodes. In addition, by means of composite traditional materials or new materials and other methods the dynamic adjustment of the absorption performance can be achieved. Although researchers have done a lot of work on the metamaterial absorbers, there remain many problems and challenges. For the future design, several promising directions are suggested from three perspectives: high performance, multifunctionality, and new structures. In terms of high performance, it is still a challenge to achieve ultra-thin broadband metamaterial absorber for low-frequency which can break through the limitation of wavelength. Integrated multifunctional metamaterials can adapt to the increasingly complex application scenarios and should gradually become the focus of attention. Since three-dimensional (3D) printing technology has proved to be applicable to the preparation of complex metamaterial structures, the new 3D metamerial absorbers will bring more vitality to the development of metamaterials. Finally, as regards the application of metamaterials in stealth, the future development of metamaterial absorbers is further summarized.
      通信作者: 许河秀, hxxuellen@gmail.com
    • 基金项目: 国家级-中国科协军事青托计划(17-JCJQ-QT-003)
      Corresponding author: Xu He-Xiu, hxxuellen@gmail.com
    [1]

    Duan X, Chen X, Zhou Y, Zhou L, Hao S 2018 IEEE Antennas Wirel. Propag. Lett. 17 1617Google Scholar

    [2]

    Li W, Valentine J 2014 Nano Lett. 14 3510Google Scholar

    [3]

    Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98

    [4]

    Choi I, Lee D 2015 Compos. Struct. 119 218Google Scholar

    [5]

    刘顺华, 刘军民, 董星龙 2014 电磁波屏蔽及吸波材料(北京: 化学工业出版社) 第270页

    Liu S H, Liu J M, Dong X L 2014 Electromagnetic Shielding and Absorb-ing Materials (Vol. 2) (Beijing: Chemical Industry Press) p270 (in Chinese)

    [6]

    Fante R L, McCormack M T 1988 IEEE Trans. Antennas Propag. 36 1443Google Scholar

    [7]

    Toit D, J L 1994 IEEE Antennas and Propag. Mag. 36 17Google Scholar

    [8]

    Jaggard D, Engheta N, Liu J 1990 Electron. Lett. 26 1332Google Scholar

    [9]

    王光明, 许河秀, 梁建刚, 蔡通 2015 紧凑型异向介质: 机理、设计与应用(北京: 国防工业出版社)

    Wang G M, Xu H X, Liang J G, Cai T 2015 Compact Metamaterials Mechanism, Design and Application (Beijing: National Defense Industry Press) (in Chinese)

    [10]

    Veselago V G 1968 Sov. Phys. Usp. 10 509Google Scholar

    [11]

    Pendry J B, Holden A, Stewart W, Youngs I 1996 Phys. Rev. Lett. 76 4773Google Scholar

    [12]

    Pendry J B, Holden A J, Robbins D J, Stewart W 1999 IEEE Trans. Microw. Theory Tech. 47 2075Google Scholar

    [13]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77Google Scholar

    [14]

    Seddon N, Bearpark T 2003 Science 302 1537Google Scholar

    [15]

    Lu J, Grzegorczyk T M, Zhang Y, Pacheco Jr J, Wu B I, Kong J A, Chen M 2003 Opt. Express 11 723Google Scholar

    [16]

    Koschny T, Zhang L, Soukoulis C M 2005 Phys. Rev. B 71 121103Google Scholar

    [17]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [18]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [19]

    Leonhardt U 2006 Science 312 1777Google Scholar

    [20]

    Schurig D, Mock J J, Justice B, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [21]

    丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波 2018 物理学报 67 198101Google Scholar

    Feng M C, Li Y F, Zhang J Q, Wang J F, Wang C, Ma H, Qu S B 2018 Acta Phys. Sin. 67 198101Google Scholar

    [22]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [23]

    庄亚强, 王光明, 张晨新, 张小宽, 宗彬锋, 马卫东, 王亚伟 2016 物理学报 65 154101Google Scholar

    Zhuang Y Q, Wang G M, Zhang C X, Zhang X K, Zong B F, Ma W D, Wang Y W 2016 Acta Phys. Sin. 65 154101Google Scholar

    [24]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light: Sci. Appl. 3 e218Google Scholar

    [25]

    Tran M C, Pham V H, Ho T H, Nguyen T T, Do H T, Bui X K, Bui S T, Le D T, Pham T L, Vu D L 2020 Sci. Rep. 10 1Google Scholar

    [26]

    Wu H, Liu S, Wan X, Zhang L, Wang D, Li L, Cui T J 2017 Adv. Sci. 4 1700098Google Scholar

    [27]

    Hum S V, Perruisseau-Carrier J 2013 IEEE Trans. Antennas Propag. 62 183Google Scholar

    [28]

    Cai T, Tang S, Wang G, Xu H, Sun S, He Q, Zhou L 2017 Adv. Opt. Mater. 5 1600506Google Scholar

    [29]

    Xu H X, Zhang L, Kim Y, Wang G M, Zhang X K, Sun Y, Ling X, Liu H, Chen Z, Qiu C W 2018 Adv. Opt. Mater. 6 1800010Google Scholar

    [30]

    Yuan F, Xu H X, Jia X Q, Wang G M, Fu Y Q 2020 IEEE Trans. Antennas Propag.68 2463Google Scholar

    [31]

    Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar

    [32]

    Zhang L, Wan X, Liu S, Yin J Y, Zhang Q, Wu H T, Cui T J 2017 IEEE Trans. Antennas Propag. 65 3374Google Scholar

    [33]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [34]

    Marin P, Cortina D, Hernando A 2008 IEEE Trans. Magn. 44 3934Google Scholar

    [35]

    刘祥萱, 陈鑫, 王煊军, 刘渊 2013 表面技术 42 104Google Scholar

    Liu X X, Chen X, Wang X J, Liu Y 2013 Surf. Technol. 42 104Google Scholar

    [36]

    周万城, 王婕, 罗发, 朱冬梅, 黄智斌, 卿玉长 2013 中国材料进展 000 463Google Scholar

    Zhou W C, Wang J, Luo F, Zhu D M, Huang Z B, Qing Y C 2013 Mater. China 000 463Google Scholar

    [37]

    Costa F, Monorchio A, Manara G 2010 IEEE Trans. Antennas Propag. 58 1551Google Scholar

    [38]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111Google Scholar

    [39]

    Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104Google Scholar

    [40]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403Google Scholar

    [41]

    Aydin K, Ferry V E, Briggs R M, Atwater H A 2011 Nat. Commun. 2 1Google Scholar

    [42]

    Simovski C 2009 Opt. Spectrosc. 107 726Google Scholar

    [43]

    Smith D R, Schultz S, Markoš P, Soukoulis C M 2002 Phys. Rev. B 65 195104Google Scholar

    [44]

    Chen X, Grzegorczyk T M, Wu B I, Pacheco J J, Kong J A 2004 Phys. Rev. E 70 016608Google Scholar

    [45]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617Google Scholar

    [46]

    Arslanagić S, Hansen T V, Mortensen N A, Gregersen A H, Sigmund O, Ziolkowski R W, Breinbjerg O 2013 IEEE Antennas and Propag. Mag. 55 91Google Scholar

    [47]

    Costa F, Monorchio A, Manara G 2012 IEEE Antennas and Propag. Mag. 54 35Google Scholar

    [48]

    Chen H T 2012 Opt. Express 20 7165Google Scholar

    [49]

    Peng X Y, Wang B, Lai S, Zhang D H, Teng J H 2012 Opt. Express 20 27756Google Scholar

    [50]

    Liu X, Zhao Q, Lan C, Zhou J 2013 Appl. Phys. Lett. 103 031910Google Scholar

    [51]

    Zheng H, Jin X, Park J, Lu Y, Rhee J Y, Jang W, Cheong H, Lee Y 2012 Opt. Express 20 24002Google Scholar

    [52]

    Im K, Kang J H, Park Q H 2018 Nat. Photonics 12 143Google Scholar

    [53]

    Tao H, Bingham C, Pilon D, Fan K, Strikwerda A, Shrekenhamer D, Padilla W, Zhang X, Averitt R 2010 J. Phys. D: Appl. Phys. 43 225102Google Scholar

    [54]

    Chen K, Adato R, Altug H 2012 ACS Nano 6 7998Google Scholar

    [55]

    Xu H X, Wang G M, Qi M Q, Liang J G, Gong J Q, Xu Z M 2012 Phys. Rev. B 86 205104Google Scholar

    [56]

    Shen X, Cui T J, Zhao J, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401Google Scholar

    [57]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R 2011 Opt. Lett. 36 945Google Scholar

    [58]

    Jia D, Xu J, Yu X 2018 Opt. Express 26 26227Google Scholar

    [59]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154Google Scholar

    [60]

    Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511Google Scholar

    [61]

    Zhang Y, Li Y, Cao Y, Liu Y, Zhang H 2017 Opt. Commun. 382 281Google Scholar

    [62]

    Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679Google Scholar

    [63]

    Ding F, Cui Y, Ge X, Jin Y, He S 2012 Appl. Phys. Lett. 100 103506Google Scholar

    [64]

    Nguyen T Q H, Phan H L, Phan D T 2017 Microw. Opt. Techn. Lett. 59 1157Google Scholar

    [65]

    Cheng Y Z, Wang Y, Nie Y, Gong R Z, Xiong X, Wang X 2012 J. Appl. Phys. 111 044902Google Scholar

    [66]

    Yuan W, Cheng Y 2014 Appl. Phys. A 117 1915Google Scholar

    [67]

    Kim Y J, Hwang J S, Yoo Y J, Khuyen B X, Rhee J Y, Chen X, Lee Y 2017 J. Phys. D: Appl. Phys. 50 405110Google Scholar

    [68]

    Kundu D, Mohan A, Chakrabarty A 2016 IEEE Antennas Wirel. Propag. Lett. 15 1589Google Scholar

    [69]

    顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华 2011 物理学报 60 087802Google Scholar

    Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W D, Ma H 2011 Acta Phys. Sin. 60 087802Google Scholar

    [70]

    Sun L, Cheng H, Zhou Y, Wang J 2012 Opt. Express 20 4675Google Scholar

    [71]

    莫漫漫, 马武伟, 庞永强, 陈润华, 张笑梅, 柳兆堂, 李想, 郭万涛 2018 物理学报 67 217801Google Scholar

    Mo M M, Ma W W, Pang Y Q, Chen R H, Zhang X M, Liu Z T, Li X, Guo W T 2018 Acta Phys. Sin. 67 217801Google Scholar

    [72]

    Tayde Y, Saikia M, Srivastava K V, Ramakrishna S A 2018 IEEE Antennas Wirel. Propag. Lett. 17 2489Google Scholar

    [73]

    Ji T, Wang Y, Cui Y, Lin Y, Hao Y, Li D 2017 Mater. Today Energy 5 181Google Scholar

    [74]

    Pang Y, Wang J, Ma H, Feng M, Li Y, Xu Z, Xia S, Qu S 2016 Sci. Rep. 6 29429Google Scholar

    [75]

    Fan Y, Wang J, Li Y, Pang Y, Zheng L, Xiang J, Zhang J, Qu S 2018 J. Phys. D: Appl. Phys. 51 215001Google Scholar

    [76]

    Li S J, Wu P X, Xu H X, Zhou Y L, Cao X Y, Han J F, Zhang C, Yang H H, Zhang Z 2018 Nanoscale Res. Lett. 13 386Google Scholar

    [77]

    Pitchappa P, Ho C P, Kropelnicki P, Singh N, Kwong D L, Lee C 2014 J. Appl. Phys. 115 193109Google Scholar

    [78]

    Gu S, Su B, Zhao X 2013 J. Appl. Phys. 114 163702Google Scholar

    [79]

    Yu P, Besteiro L V, Huang Y, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O, Wang Z 2019 Adv. Opt. Mater. 7 1800995Google Scholar

    [80]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104Google Scholar

    [81]

    Zhu B, Wang Z B, Yu Z Z, Zhang Q, Zhao J M, Feng Y J, Jiang T 2009 Chin. Phys. Lett. 26 114102Google Scholar

    [82]

    Li L, Yang Y, Liang C 2011 J. Appl. Phys. 110 063702Google Scholar

    [83]

    Gu C, Qu S B, Pei Z B, Xu Z 2011 Chin. Phys. B 20 037801Google Scholar

    [84]

    Chen J, Hu Z, Wang S, Huang X, Liu M 2016 Eur. Phys. J. B 89 14Google Scholar

    [85]

    Zhu B, Wang Z, Huang C, Feng Y, Zhao J, Jiang T 2010 Prog. Electromagn. Res. 101 231Google Scholar

    [86]

    Wang J, Yang R, Tian J, Chen X, Zhang W 2018 IEEE Antennas Wirel. Propag. Lett. 17 1242Google Scholar

    [87]

    Xu Y Q, Zhou P H, Zhang H B, Chen L, Deng L J 2011 J. Appl. Phys. 110 044102Google Scholar

    [88]

    Wang B, Koschny T, Soukoulis C M 2009 Phys. Rev. B 80 033108Google Scholar

    [89]

    Munk B A, Munk P, Pryor J 2007 IEEE Trans. Antennas Propag. 55 186Google Scholar

    [90]

    Bhattacharyya S, Srivastava K V 2014 J. Appl. Phys. 115 064508Google Scholar

    [91]

    Ghosh S, Nguyen T T, Lim S 2019 EPJ Appl. Metamater. 6 12 064508

    [92]

    Shen Y, Pang Y, Wang J, Ma H, Pei Z, Qu S 2015 J. Phys. D: Appl. Phys. 48 445008Google Scholar

    [93]

    Chen T, Li S J, Cao X Y, Gao J, Guo Z X 2019 Appl. Phys. A 125 232Google Scholar

    [94]

    Chang T, Langley R J, Parker E 1993 IEEE Microwave Guided Wave Lett. 3 387Google Scholar

    [95]

    Shadrivov I V, Morrison S K, Kivshar Y S 2006 Opt. Express 14 9344Google Scholar

    [96]

    Zhu H, Liu X, Cheung S, Yuk T 2013 IEEE Trans. Antennas Propag. 62 80Google Scholar

    [97]

    李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥 2019 物理学报 68 095201Google Scholar

    Li Y H, Deng L W, Luo H, He L H, He J, Xu Y C, Huang S X 2019 Acta Phys. Sin. 68 095201Google Scholar

    [98]

    Zhao X, Wang Y, Schalch J, Duan G, Cremin K, Zhang J, Chen C, Averitt R D, Zhang X 2019 ACS Photonics 6 830Google Scholar

    [99]

    Zhai Z, Zhang L, Li X, Xiao S 2019 Opt. Commun. 431 199Google Scholar

    [100]

    陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 物理学报 68 247802Google Scholar

    Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 247802Google Scholar

    [101]

    Balci O, Kakenov N, Karademir E, Balci S, Cakmakyapan S, Polat E O, Caglayan H, Özbay E, Kocabas C 2018 Sci. Adv. 4 eaao1749Google Scholar

    [102]

    毕科, 王旭莹, 兰楚文, 郝亚楠, 周济 2019 中国材料进展 38 1Google Scholar

    Bi K, Wang X Y, Lan C W, Hao Y N, Zhou J 2019 Mater. China 38 1Google Scholar

    [103]

    Zhao J, Cheng Q, Chen J, Qi M Q, Jiang W X, Cui T J 2013 New J. Phys. 15 043049Google Scholar

    [104]

    Li M, Yi Z, Luo Y, Muneer B, Zhu Q 2016 IEEE Trans. Antennas Propag. 64 944Google Scholar

    [105]

    Zhang Y, Feng Y, Zhu B, Zhao J, Jiang T 2014 Opt. Express 22 22743Google Scholar

    [106]

    Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403Google Scholar

    [107]

    Zhang F, Feng S, Qiu K, Liu Z, Fan Y, Zhang W, Zhao Q, Zhou J 2015 Appl. Phys. Lett. 106 091907Google Scholar

    [108]

    Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230Google Scholar

    [109]

    Acher O, Dubourg S 2008 Phys. Rev. B 77 104440Google Scholar

    [110]

    院伟, 杨进, 王一龙, 李维, 官建国 2016 材料导报 30 104Google Scholar

    Yuan W, Yang J, Wang Y L, Li W, Guan J G 2016 Mater. Rev. 30 104Google Scholar

    [111]

    Mou J, Shen Z 2017 Sci. Rep. 7 1Google Scholar

    [112]

    Mou J, Shen Z 2016 IEEE Trans. Antennas Propag. 65 696Google Scholar

    [113]

    Banadaki M D, Heidari A A, Nakhkash M 2017 IEEE Antennas Wirel. Propag. Lett. 17 205Google Scholar

    [114]

    Li W, Wei J, Wang W, Hu D, Li Y, Guan J 2016 Mater. Des. 110 27Google Scholar

    [115]

    程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 物理学报 61 134102Google Scholar

    Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102Google Scholar

    [116]

    Li W, Liu Q, Wang L, Zhou Z, Zheng J, Ying Y, Qiao L, Yu J, Qiao X, Che S 2018 AIP Adv. 8 015318Google Scholar

    [117]

    许河秀 2019 超表面电磁调控机理与功能器件应用研究 (北京: 科学出版社)

    Xu H X 2019 Investigations on Electromagnetic Wave Manipulations and Functional Device Applications Using Metasurfaces (Beijing: Science Press) (in Chinese)

    [118]

    Sun J, Chen K, Ding G, Guo W, Zhao J, Feng Y, Jiang T 2019 IEEE Access 7 93919Google Scholar

    [119]

    Peng L, Li X F, Gao X, Jiang X, Li S M 2019 Opt. Mater. Express 9 687Google Scholar

    [120]

    Chen W, Chen R, Zhou Y, Ma Y 2019 IEEE Photonics Technol. Lett. 31 1187Google Scholar

    [121]

    沈杨, 王甲富, 张介秋, 李勇峰, 郑麟, 庞永强, 屈绍波 2018 空军工程大学学报 (自然科学版) 19 39Google Scholar

    Shen Y, Wang J F, Zhang J Q, Li Y F, Zheng L, Pang Y Q, Qu S B 2018 J. Air Force Engineering Univ. (Nat. Sci. Ed.) 19 39Google Scholar

    [122]

    Wang J F, Qu S B, Xu Z, Fu Z T, Ma H, Yang Y M 2009 J. Phys. D: Appl. Phys. 42 155413Google Scholar

    [123]

    鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华 2013 物理学报 62 158102Google Scholar

    Lu Lei, Qu S B, Shi H Y, Zhang A X, Zhang J Q, Ma H 2013 Acta Phys. Sin. 62 158102Google Scholar

    [124]

    Xu H X, Wang G M, Tao Z, Cui T J 2014 Sci. Rep. 4 5744

    [125]

    Xu H X, Wang G M, Ma K, Cui T J 2014 Adv. Opt. Mater. 2 572Google Scholar

    [126]

    熊益军, 王岩, 王强, 王春齐, 黄小忠, 张芬, 周丁 2018 物理学报 67 084202Google Scholar

    Xiong Y J, Wang Y, Wang Q, Wang C Q, Huang X Z, Zhang F, Zhou D 2018 Acta Phys. Sin. 67 084202Google Scholar

    [127]

    Lim D, Yu S, Lim S 2018 IEEE Access 6 43654Google Scholar

    [128]

    Jiang W, Yan L, Ma H, Fan Y, Wang J, Feng M, Qu S 2018 Sci. Rep. 8 4817Google Scholar

    [129]

    Xie J, Quader S, Xiao F, He C, Liang X, Geng J, Jin R, Zhu W, Rukhlenko I D 2019 IEEE Antennas Wirel. Propag. Lett. 18 536Google Scholar

    [130]

    田小永, 尚振涛, 尹丽仙, 李涤尘 2019 航空制造技术 62 14Google Scholar

    Tian X Y, Shang Z T, Yin L X, Li D C 2019 Aeronaut. Manuf. Technol. 62 14Google Scholar

    [131]

    Rashid A K, Li B, Shen Z 2014 IEEE Antennas and Propag. Mag. 56 43Google Scholar

    [132]

    Yu Y, Shen Z, Deng T, Luo G 2017 IEEE Trans. Antennas Propag. 65 4363Google Scholar

    [133]

    Li W, Wu T, Wang W, Guan J, Zhai P 2014 Appl. Phys. Lett. 104 022903Google Scholar

    [134]

    Li M, Shen L, Jing L, Xu S, Zheng B, Lin X, Yang Y, Wang Z, Chen H 2019 Adv. Sci. 6 1901434Google Scholar

    [135]

    梁彩云, 王志江 2018 航空材料学报 38 5Google Scholar

    Liang C Y, Wang Z J 2018 J. Aeronaut. Mater. 38 5Google Scholar

  • 图 1  超材料完美吸波体 (a) 单元结构示意图; (b) 吸波性能的仿真结果

    Fig. 1.  Perfect metamaterial absorber: (a) The schematic of a unit cell; (b) simulation results for the absorption.

    图 2  三频带超材料吸波体 (a) 单元拓扑结构; (b) 等效电路模型; (c) 横电波(transverse electric, TE)模式下在不同入射角下测得的吸收率与频率的关系; (d) 横磁波(transverse magnetic, TM)模式下在不同入射角下测得的吸收率与频率的关系[55]

    Fig. 2.  Triple-band metamaterial absorber: (a) Topology structure of the element; (b) equivalent circuit models; (c) measured absorption as a function of frequency for TE mode radiation at different angles of incidence; (d) measured absorption as a function of frequency for TM mode radiation at different angles of incidence[55].

    图 3  宽带太赫兹超材料吸波体 (a) 单元结构示意图; (b) 不同I型谐振器组合的吸收率[59]

    Fig. 3.  Terahertz metamaterial absorbers with broad band absorption: (a) Schematic of the whole unit cell; (b) simulation results of absorption for three different configurations of the I-shaped resonators[59].

    图 4  超宽带完美超材料吸波体单元原理图 (a) 单元三维示意图; (b) 带有开口谐振环II的底层结构; (c) 带有开口谐振环I的第三层结构; (d) 加载集总电阻的第二层结构[76]

    Fig. 4.  Schematic geometry of unit cell for the ultra-broadband perfect metamaterial absorber: (a) the 3 D schematic of a unit cell; (b) the bottom layer with the split ring resonator-II; (c) the third layer with the split ring resonator-I; (d) the third layer with lumped resistances[76].

    图 5  极化和角度不敏感超材料吸波体单元结构示意图 (a) 正交排布的极化不敏感单元[81]; (b) 单频带单元[84]; (c) 四个扇形为基础的角度不敏感单元; (d) 八个扇形为基础的角度不敏感单元[91]

    Fig. 5.  Schematic diagram of polarization and angle-independent metamaterial absorber unit cell: (a) Orthogonal polarization insensitive unit cell[81]; (b) single-band metamaterial absorber unit cell[84]; (c) four circular sector-based unit cell; (d) eight circular sector-based unit cell[91].

    图 6  动态可调超材料吸波体 (a) 加载变容二极管的超材料吸波体[103]; (b) 加载石墨烯的超材料吸波体单元结构[105]; (c) 液晶可调超材料完美吸波体[106]; (d) 基于机械可调谐的吸波体[107]

    Fig. 6.  Dynamically tunable metamaterial absorber: (a) Tunable metamaterial absorber using varactor diodes[103]; (b) schematic of the unit cell of the graphene based tunable metamaterial absorber[105]; (c) liquid crystal tunable metamaterial perfect absorber[106]; (d) mechanically stretchable and tunable metamaterial absorber[107].

    图 7  多功能可重构三维超材料[134]

    Fig. 7.  Multifunctional reconfigurable 3D metamaterial[134].

    表 1  用于实现多频/宽频吸波体的不同方法总结

    Table 1.  A summary of methods used to create multiple/broadband absorbers.

    方法工作频率相对带宽吸收率厚度周期结构文献
    平面排布30.6—37.5 THz20.26%≥ 80%0.041 λL10.8 µm“三明治”[61]
    多层堆叠24.8/25.5 THzN≥ 90%0.062 λL500 nm多层结构[62]
    多层堆叠7.8—14.7 GHz61.33%≥ 90%0.130 λL11 mm金字塔结构[63]
    集总元件5.3—11.2 GHz70.7%≥ 90%0.077 λL13.6 mm单层结构[68]
    用电阻膜7.0—27.5 GHz118.8%≥ 90%0.093 λL5.5 mm“三明治”[69]
    用电阻膜2.0—18.5 GHz160.97%N0.082 λL11 mm多层结构[72]
    基于SSPP7.6—14.7 GHz63.7%≥ 90%0.177 λL14 mm非平面结构[74]
    混合方法4.5—25.4 GHz139.6%≥ 80%0.075 λL8.4 mm多层结构[76]
    新型结构9.05—11.4 GHz23.0%≥ 80%0.060 λL5 mm分形结构[78]
    注: 相对带宽指10 dB吸收带宽, λL为最低工作频率所对应的工作波长, N代表没有提及.
    下载: 导出CSV
  • [1]

    Duan X, Chen X, Zhou Y, Zhou L, Hao S 2018 IEEE Antennas Wirel. Propag. Lett. 17 1617Google Scholar

    [2]

    Li W, Valentine J 2014 Nano Lett. 14 3510Google Scholar

    [3]

    Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98

    [4]

    Choi I, Lee D 2015 Compos. Struct. 119 218Google Scholar

    [5]

    刘顺华, 刘军民, 董星龙 2014 电磁波屏蔽及吸波材料(北京: 化学工业出版社) 第270页

    Liu S H, Liu J M, Dong X L 2014 Electromagnetic Shielding and Absorb-ing Materials (Vol. 2) (Beijing: Chemical Industry Press) p270 (in Chinese)

    [6]

    Fante R L, McCormack M T 1988 IEEE Trans. Antennas Propag. 36 1443Google Scholar

    [7]

    Toit D, J L 1994 IEEE Antennas and Propag. Mag. 36 17Google Scholar

    [8]

    Jaggard D, Engheta N, Liu J 1990 Electron. Lett. 26 1332Google Scholar

    [9]

    王光明, 许河秀, 梁建刚, 蔡通 2015 紧凑型异向介质: 机理、设计与应用(北京: 国防工业出版社)

    Wang G M, Xu H X, Liang J G, Cai T 2015 Compact Metamaterials Mechanism, Design and Application (Beijing: National Defense Industry Press) (in Chinese)

    [10]

    Veselago V G 1968 Sov. Phys. Usp. 10 509Google Scholar

    [11]

    Pendry J B, Holden A, Stewart W, Youngs I 1996 Phys. Rev. Lett. 76 4773Google Scholar

    [12]

    Pendry J B, Holden A J, Robbins D J, Stewart W 1999 IEEE Trans. Microw. Theory Tech. 47 2075Google Scholar

    [13]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77Google Scholar

    [14]

    Seddon N, Bearpark T 2003 Science 302 1537Google Scholar

    [15]

    Lu J, Grzegorczyk T M, Zhang Y, Pacheco Jr J, Wu B I, Kong J A, Chen M 2003 Opt. Express 11 723Google Scholar

    [16]

    Koschny T, Zhang L, Soukoulis C M 2005 Phys. Rev. B 71 121103Google Scholar

    [17]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [18]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [19]

    Leonhardt U 2006 Science 312 1777Google Scholar

    [20]

    Schurig D, Mock J J, Justice B, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [21]

    丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波 2018 物理学报 67 198101Google Scholar

    Feng M C, Li Y F, Zhang J Q, Wang J F, Wang C, Ma H, Qu S B 2018 Acta Phys. Sin. 67 198101Google Scholar

    [22]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [23]

    庄亚强, 王光明, 张晨新, 张小宽, 宗彬锋, 马卫东, 王亚伟 2016 物理学报 65 154101Google Scholar

    Zhuang Y Q, Wang G M, Zhang C X, Zhang X K, Zong B F, Ma W D, Wang Y W 2016 Acta Phys. Sin. 65 154101Google Scholar

    [24]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light: Sci. Appl. 3 e218Google Scholar

    [25]

    Tran M C, Pham V H, Ho T H, Nguyen T T, Do H T, Bui X K, Bui S T, Le D T, Pham T L, Vu D L 2020 Sci. Rep. 10 1Google Scholar

    [26]

    Wu H, Liu S, Wan X, Zhang L, Wang D, Li L, Cui T J 2017 Adv. Sci. 4 1700098Google Scholar

    [27]

    Hum S V, Perruisseau-Carrier J 2013 IEEE Trans. Antennas Propag. 62 183Google Scholar

    [28]

    Cai T, Tang S, Wang G, Xu H, Sun S, He Q, Zhou L 2017 Adv. Opt. Mater. 5 1600506Google Scholar

    [29]

    Xu H X, Zhang L, Kim Y, Wang G M, Zhang X K, Sun Y, Ling X, Liu H, Chen Z, Qiu C W 2018 Adv. Opt. Mater. 6 1800010Google Scholar

    [30]

    Yuan F, Xu H X, Jia X Q, Wang G M, Fu Y Q 2020 IEEE Trans. Antennas Propag.68 2463Google Scholar

    [31]

    Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar

    [32]

    Zhang L, Wan X, Liu S, Yin J Y, Zhang Q, Wu H T, Cui T J 2017 IEEE Trans. Antennas Propag. 65 3374Google Scholar

    [33]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [34]

    Marin P, Cortina D, Hernando A 2008 IEEE Trans. Magn. 44 3934Google Scholar

    [35]

    刘祥萱, 陈鑫, 王煊军, 刘渊 2013 表面技术 42 104Google Scholar

    Liu X X, Chen X, Wang X J, Liu Y 2013 Surf. Technol. 42 104Google Scholar

    [36]

    周万城, 王婕, 罗发, 朱冬梅, 黄智斌, 卿玉长 2013 中国材料进展 000 463Google Scholar

    Zhou W C, Wang J, Luo F, Zhu D M, Huang Z B, Qing Y C 2013 Mater. China 000 463Google Scholar

    [37]

    Costa F, Monorchio A, Manara G 2010 IEEE Trans. Antennas Propag. 58 1551Google Scholar

    [38]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111Google Scholar

    [39]

    Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104Google Scholar

    [40]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403Google Scholar

    [41]

    Aydin K, Ferry V E, Briggs R M, Atwater H A 2011 Nat. Commun. 2 1Google Scholar

    [42]

    Simovski C 2009 Opt. Spectrosc. 107 726Google Scholar

    [43]

    Smith D R, Schultz S, Markoš P, Soukoulis C M 2002 Phys. Rev. B 65 195104Google Scholar

    [44]

    Chen X, Grzegorczyk T M, Wu B I, Pacheco J J, Kong J A 2004 Phys. Rev. E 70 016608Google Scholar

    [45]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617Google Scholar

    [46]

    Arslanagić S, Hansen T V, Mortensen N A, Gregersen A H, Sigmund O, Ziolkowski R W, Breinbjerg O 2013 IEEE Antennas and Propag. Mag. 55 91Google Scholar

    [47]

    Costa F, Monorchio A, Manara G 2012 IEEE Antennas and Propag. Mag. 54 35Google Scholar

    [48]

    Chen H T 2012 Opt. Express 20 7165Google Scholar

    [49]

    Peng X Y, Wang B, Lai S, Zhang D H, Teng J H 2012 Opt. Express 20 27756Google Scholar

    [50]

    Liu X, Zhao Q, Lan C, Zhou J 2013 Appl. Phys. Lett. 103 031910Google Scholar

    [51]

    Zheng H, Jin X, Park J, Lu Y, Rhee J Y, Jang W, Cheong H, Lee Y 2012 Opt. Express 20 24002Google Scholar

    [52]

    Im K, Kang J H, Park Q H 2018 Nat. Photonics 12 143Google Scholar

    [53]

    Tao H, Bingham C, Pilon D, Fan K, Strikwerda A, Shrekenhamer D, Padilla W, Zhang X, Averitt R 2010 J. Phys. D: Appl. Phys. 43 225102Google Scholar

    [54]

    Chen K, Adato R, Altug H 2012 ACS Nano 6 7998Google Scholar

    [55]

    Xu H X, Wang G M, Qi M Q, Liang J G, Gong J Q, Xu Z M 2012 Phys. Rev. B 86 205104Google Scholar

    [56]

    Shen X, Cui T J, Zhao J, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401Google Scholar

    [57]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R 2011 Opt. Lett. 36 945Google Scholar

    [58]

    Jia D, Xu J, Yu X 2018 Opt. Express 26 26227Google Scholar

    [59]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154Google Scholar

    [60]

    Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511Google Scholar

    [61]

    Zhang Y, Li Y, Cao Y, Liu Y, Zhang H 2017 Opt. Commun. 382 281Google Scholar

    [62]

    Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679Google Scholar

    [63]

    Ding F, Cui Y, Ge X, Jin Y, He S 2012 Appl. Phys. Lett. 100 103506Google Scholar

    [64]

    Nguyen T Q H, Phan H L, Phan D T 2017 Microw. Opt. Techn. Lett. 59 1157Google Scholar

    [65]

    Cheng Y Z, Wang Y, Nie Y, Gong R Z, Xiong X, Wang X 2012 J. Appl. Phys. 111 044902Google Scholar

    [66]

    Yuan W, Cheng Y 2014 Appl. Phys. A 117 1915Google Scholar

    [67]

    Kim Y J, Hwang J S, Yoo Y J, Khuyen B X, Rhee J Y, Chen X, Lee Y 2017 J. Phys. D: Appl. Phys. 50 405110Google Scholar

    [68]

    Kundu D, Mohan A, Chakrabarty A 2016 IEEE Antennas Wirel. Propag. Lett. 15 1589Google Scholar

    [69]

    顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华 2011 物理学报 60 087802Google Scholar

    Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W D, Ma H 2011 Acta Phys. Sin. 60 087802Google Scholar

    [70]

    Sun L, Cheng H, Zhou Y, Wang J 2012 Opt. Express 20 4675Google Scholar

    [71]

    莫漫漫, 马武伟, 庞永强, 陈润华, 张笑梅, 柳兆堂, 李想, 郭万涛 2018 物理学报 67 217801Google Scholar

    Mo M M, Ma W W, Pang Y Q, Chen R H, Zhang X M, Liu Z T, Li X, Guo W T 2018 Acta Phys. Sin. 67 217801Google Scholar

    [72]

    Tayde Y, Saikia M, Srivastava K V, Ramakrishna S A 2018 IEEE Antennas Wirel. Propag. Lett. 17 2489Google Scholar

    [73]

    Ji T, Wang Y, Cui Y, Lin Y, Hao Y, Li D 2017 Mater. Today Energy 5 181Google Scholar

    [74]

    Pang Y, Wang J, Ma H, Feng M, Li Y, Xu Z, Xia S, Qu S 2016 Sci. Rep. 6 29429Google Scholar

    [75]

    Fan Y, Wang J, Li Y, Pang Y, Zheng L, Xiang J, Zhang J, Qu S 2018 J. Phys. D: Appl. Phys. 51 215001Google Scholar

    [76]

    Li S J, Wu P X, Xu H X, Zhou Y L, Cao X Y, Han J F, Zhang C, Yang H H, Zhang Z 2018 Nanoscale Res. Lett. 13 386Google Scholar

    [77]

    Pitchappa P, Ho C P, Kropelnicki P, Singh N, Kwong D L, Lee C 2014 J. Appl. Phys. 115 193109Google Scholar

    [78]

    Gu S, Su B, Zhao X 2013 J. Appl. Phys. 114 163702Google Scholar

    [79]

    Yu P, Besteiro L V, Huang Y, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O, Wang Z 2019 Adv. Opt. Mater. 7 1800995Google Scholar

    [80]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104Google Scholar

    [81]

    Zhu B, Wang Z B, Yu Z Z, Zhang Q, Zhao J M, Feng Y J, Jiang T 2009 Chin. Phys. Lett. 26 114102Google Scholar

    [82]

    Li L, Yang Y, Liang C 2011 J. Appl. Phys. 110 063702Google Scholar

    [83]

    Gu C, Qu S B, Pei Z B, Xu Z 2011 Chin. Phys. B 20 037801Google Scholar

    [84]

    Chen J, Hu Z, Wang S, Huang X, Liu M 2016 Eur. Phys. J. B 89 14Google Scholar

    [85]

    Zhu B, Wang Z, Huang C, Feng Y, Zhao J, Jiang T 2010 Prog. Electromagn. Res. 101 231Google Scholar

    [86]

    Wang J, Yang R, Tian J, Chen X, Zhang W 2018 IEEE Antennas Wirel. Propag. Lett. 17 1242Google Scholar

    [87]

    Xu Y Q, Zhou P H, Zhang H B, Chen L, Deng L J 2011 J. Appl. Phys. 110 044102Google Scholar

    [88]

    Wang B, Koschny T, Soukoulis C M 2009 Phys. Rev. B 80 033108Google Scholar

    [89]

    Munk B A, Munk P, Pryor J 2007 IEEE Trans. Antennas Propag. 55 186Google Scholar

    [90]

    Bhattacharyya S, Srivastava K V 2014 J. Appl. Phys. 115 064508Google Scholar

    [91]

    Ghosh S, Nguyen T T, Lim S 2019 EPJ Appl. Metamater. 6 12 064508

    [92]

    Shen Y, Pang Y, Wang J, Ma H, Pei Z, Qu S 2015 J. Phys. D: Appl. Phys. 48 445008Google Scholar

    [93]

    Chen T, Li S J, Cao X Y, Gao J, Guo Z X 2019 Appl. Phys. A 125 232Google Scholar

    [94]

    Chang T, Langley R J, Parker E 1993 IEEE Microwave Guided Wave Lett. 3 387Google Scholar

    [95]

    Shadrivov I V, Morrison S K, Kivshar Y S 2006 Opt. Express 14 9344Google Scholar

    [96]

    Zhu H, Liu X, Cheung S, Yuk T 2013 IEEE Trans. Antennas Propag. 62 80Google Scholar

    [97]

    李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥 2019 物理学报 68 095201Google Scholar

    Li Y H, Deng L W, Luo H, He L H, He J, Xu Y C, Huang S X 2019 Acta Phys. Sin. 68 095201Google Scholar

    [98]

    Zhao X, Wang Y, Schalch J, Duan G, Cremin K, Zhang J, Chen C, Averitt R D, Zhang X 2019 ACS Photonics 6 830Google Scholar

    [99]

    Zhai Z, Zhang L, Li X, Xiao S 2019 Opt. Commun. 431 199Google Scholar

    [100]

    陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 物理学报 68 247802Google Scholar

    Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 247802Google Scholar

    [101]

    Balci O, Kakenov N, Karademir E, Balci S, Cakmakyapan S, Polat E O, Caglayan H, Özbay E, Kocabas C 2018 Sci. Adv. 4 eaao1749Google Scholar

    [102]

    毕科, 王旭莹, 兰楚文, 郝亚楠, 周济 2019 中国材料进展 38 1Google Scholar

    Bi K, Wang X Y, Lan C W, Hao Y N, Zhou J 2019 Mater. China 38 1Google Scholar

    [103]

    Zhao J, Cheng Q, Chen J, Qi M Q, Jiang W X, Cui T J 2013 New J. Phys. 15 043049Google Scholar

    [104]

    Li M, Yi Z, Luo Y, Muneer B, Zhu Q 2016 IEEE Trans. Antennas Propag. 64 944Google Scholar

    [105]

    Zhang Y, Feng Y, Zhu B, Zhao J, Jiang T 2014 Opt. Express 22 22743Google Scholar

    [106]

    Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403Google Scholar

    [107]

    Zhang F, Feng S, Qiu K, Liu Z, Fan Y, Zhang W, Zhao Q, Zhou J 2015 Appl. Phys. Lett. 106 091907Google Scholar

    [108]

    Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230Google Scholar

    [109]

    Acher O, Dubourg S 2008 Phys. Rev. B 77 104440Google Scholar

    [110]

    院伟, 杨进, 王一龙, 李维, 官建国 2016 材料导报 30 104Google Scholar

    Yuan W, Yang J, Wang Y L, Li W, Guan J G 2016 Mater. Rev. 30 104Google Scholar

    [111]

    Mou J, Shen Z 2017 Sci. Rep. 7 1Google Scholar

    [112]

    Mou J, Shen Z 2016 IEEE Trans. Antennas Propag. 65 696Google Scholar

    [113]

    Banadaki M D, Heidari A A, Nakhkash M 2017 IEEE Antennas Wirel. Propag. Lett. 17 205Google Scholar

    [114]

    Li W, Wei J, Wang W, Hu D, Li Y, Guan J 2016 Mater. Des. 110 27Google Scholar

    [115]

    程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 物理学报 61 134102Google Scholar

    Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102Google Scholar

    [116]

    Li W, Liu Q, Wang L, Zhou Z, Zheng J, Ying Y, Qiao L, Yu J, Qiao X, Che S 2018 AIP Adv. 8 015318Google Scholar

    [117]

    许河秀 2019 超表面电磁调控机理与功能器件应用研究 (北京: 科学出版社)

    Xu H X 2019 Investigations on Electromagnetic Wave Manipulations and Functional Device Applications Using Metasurfaces (Beijing: Science Press) (in Chinese)

    [118]

    Sun J, Chen K, Ding G, Guo W, Zhao J, Feng Y, Jiang T 2019 IEEE Access 7 93919Google Scholar

    [119]

    Peng L, Li X F, Gao X, Jiang X, Li S M 2019 Opt. Mater. Express 9 687Google Scholar

    [120]

    Chen W, Chen R, Zhou Y, Ma Y 2019 IEEE Photonics Technol. Lett. 31 1187Google Scholar

    [121]

    沈杨, 王甲富, 张介秋, 李勇峰, 郑麟, 庞永强, 屈绍波 2018 空军工程大学学报 (自然科学版) 19 39Google Scholar

    Shen Y, Wang J F, Zhang J Q, Li Y F, Zheng L, Pang Y Q, Qu S B 2018 J. Air Force Engineering Univ. (Nat. Sci. Ed.) 19 39Google Scholar

    [122]

    Wang J F, Qu S B, Xu Z, Fu Z T, Ma H, Yang Y M 2009 J. Phys. D: Appl. Phys. 42 155413Google Scholar

    [123]

    鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华 2013 物理学报 62 158102Google Scholar

    Lu Lei, Qu S B, Shi H Y, Zhang A X, Zhang J Q, Ma H 2013 Acta Phys. Sin. 62 158102Google Scholar

    [124]

    Xu H X, Wang G M, Tao Z, Cui T J 2014 Sci. Rep. 4 5744

    [125]

    Xu H X, Wang G M, Ma K, Cui T J 2014 Adv. Opt. Mater. 2 572Google Scholar

    [126]

    熊益军, 王岩, 王强, 王春齐, 黄小忠, 张芬, 周丁 2018 物理学报 67 084202Google Scholar

    Xiong Y J, Wang Y, Wang Q, Wang C Q, Huang X Z, Zhang F, Zhou D 2018 Acta Phys. Sin. 67 084202Google Scholar

    [127]

    Lim D, Yu S, Lim S 2018 IEEE Access 6 43654Google Scholar

    [128]

    Jiang W, Yan L, Ma H, Fan Y, Wang J, Feng M, Qu S 2018 Sci. Rep. 8 4817Google Scholar

    [129]

    Xie J, Quader S, Xiao F, He C, Liang X, Geng J, Jin R, Zhu W, Rukhlenko I D 2019 IEEE Antennas Wirel. Propag. Lett. 18 536Google Scholar

    [130]

    田小永, 尚振涛, 尹丽仙, 李涤尘 2019 航空制造技术 62 14Google Scholar

    Tian X Y, Shang Z T, Yin L X, Li D C 2019 Aeronaut. Manuf. Technol. 62 14Google Scholar

    [131]

    Rashid A K, Li B, Shen Z 2014 IEEE Antennas and Propag. Mag. 56 43Google Scholar

    [132]

    Yu Y, Shen Z, Deng T, Luo G 2017 IEEE Trans. Antennas Propag. 65 4363Google Scholar

    [133]

    Li W, Wu T, Wang W, Guan J, Zhai P 2014 Appl. Phys. Lett. 104 022903Google Scholar

    [134]

    Li M, Shen L, Jing L, Xu S, Zheng B, Lin X, Yang Y, Wang Z, Chen H 2019 Adv. Sci. 6 1901434Google Scholar

    [135]

    梁彩云, 王志江 2018 航空材料学报 38 5Google Scholar

    Liang C Y, Wang Z J 2018 J. Aeronaut. Mater. 38 5Google Scholar

  • [1] 于惠存, 曹祥玉, 高军, 杨欢欢, 韩江枫, 朱学文, 李桐. 一种宽带可重构反射型极化旋转表面. 物理学报, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041
    [2] 何政蕊, 耿友林. 一种新型宽频带低损耗小单元左手材料的设计与实现. 物理学报, 2016, 65(9): 094101. doi: 10.7498/aps.65.094101
    [3] 吴良威, 张正平. 基于多开口田字形宽频带低损耗左手材料. 物理学报, 2016, 65(16): 164101. doi: 10.7498/aps.65.164101
    [4] 刘桐君, 习翔, 令永红, 孙雅丽, 李志伟, 黄黎蓉. 宽入射角度偏振不敏感高效异常反射梯度超表面. 物理学报, 2015, 64(23): 237802. doi: 10.7498/aps.64.237802
    [5] 董怀景, 耿友林. 基于双十字架型宽带低耗小单元左手材料的设计与实验验证. 物理学报, 2015, 64(2): 024102. doi: 10.7498/aps.64.024102
    [6] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计. 物理学报, 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [7] 王丛屹, 徐成, 伍瑞新. 用最小结构单元频率选择表面实现大入射角宽频带的透波材料. 物理学报, 2014, 63(13): 137803. doi: 10.7498/aps.63.137803
    [8] 程用志, 聂彦, 龚荣洲, 王鲜. 基于电阻膜与分形频率选择表面的超薄宽频带超材料吸波体的设计. 物理学报, 2013, 62(4): 044103. doi: 10.7498/aps.62.044103
    [9] 程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜. 基于超材料与电阻型频率选择表面的薄型宽频带吸波体的设计. 物理学报, 2012, 61(13): 134101. doi: 10.7498/aps.61.134101
    [10] 李文强, 曹祥玉, 高军, 刘涛, 姚旭, 马嘉俊. 基于斜三角开口对环的宽带低耗左手材料. 物理学报, 2012, 61(15): 154102. doi: 10.7498/aps.61.154102
    [11] 刘青伦, 王自成, 刘濮鲲. 基于双排矩形梳状慢波结构的W波段宽频带行波管模拟研究. 物理学报, 2012, 61(12): 124101. doi: 10.7498/aps.61.124101
    [12] 顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东. 一种极化不敏感和双面吸波的手性超材料吸波体. 物理学报, 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
    [13] 陈春晖, 屈绍波, 徐卓, 王甲富, 马华, 周航. 基于单面金属结构的二维宽带左手材料. 物理学报, 2011, 60(2): 024101. doi: 10.7498/aps.60.024101
    [14] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤. 基于磁谐振器加载的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [15] 顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华. 基于电阻膜的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087802. doi: 10.7498/aps.60.087802
    [16] 王甲富, 屈绍波, 徐卓, 张介秋, 马华, 杨一鸣, 吴翔, 鲁磊. 基于金属结构单元间耦合的左手材料的设计及实验验证. 物理学报, 2010, 59(6): 4018-4022. doi: 10.7498/aps.59.4018
    [17] 孟繁义, 吴 群, 金博识, 王海龙, 吴 健. 二维各向同性异向介质负折射特性仿真验证. 物理学报, 2006, 55(9): 4514-4519. doi: 10.7498/aps.55.4514
    [18] 孟繁义, 吴 群, 吴 健. C波段平面异向介质设计及其后向波特性验证. 物理学报, 2006, 55(5): 2200-2205. doi: 10.7498/aps.55.2200
    [19] 武明峰, 孟繁义, 吴 群, 吴 健. 基于DGS和双层SRRs结构的左手介质微带线的设计. 物理学报, 2006, 55(11): 5790-5794. doi: 10.7498/aps.55.5790
    [20] 孟繁义, 吴 群, 吴 健. 1.7—2.7GHz宽频带小单元异向介质设计及其介质参数提取. 物理学报, 2006, 55(5): 2194-2199. doi: 10.7498/aps.55.2194
计量
  • 文章访问数:  30793
  • PDF下载量:  1876
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-10
  • 修回日期:  2020-04-01
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-05

/

返回文章
返回