搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属离子掺杂提高全无机钙钛矿纳米晶发光性质的研究进展

于鹏 曹盛 曾若生 邹炳锁 赵家龙

引用本文:
Citation:

金属离子掺杂提高全无机钙钛矿纳米晶发光性质的研究进展

于鹏, 曹盛, 曾若生, 邹炳锁, 赵家龙

Advances in improved photoluminescence properties of all inorganic perovskite nanocrystals via metal-ion doping

Yu Peng, Cao Sheng, Zeng Ruo-Sheng, Zou Bing-Suo, Zhao Jia-Long
PDF
HTML
导出引用
  • 金属卤化物钙钛矿纳米晶由于其卓越的光电子性能, 在发光二极管、激光器、X射线成像、太阳能电池及光电探测等领域中受到了极大的关注. 与有机-无机杂化钙钛矿纳米晶相比, 全无机钙钛矿CsPbX3 (X = Cl, Br, I)纳米晶具有更优异的光电性能和更高的稳定性. 为进一步提高CsPbX3纳米晶的光致发光量子效率和稳定性, 有研究已经着手调控纳米晶的微观结构, 减少作为非辐射复合中心的缺陷. 近年来, 在金属离子掺杂CsPbX3纳米晶过程中, 发现不同种类和不同掺杂浓度的金属离子对其电子能带结构和光致发光性能有着巨大的影响, 基于金属离子掺杂取得了光致发光量子效率接近100%的CsPbX3纳米晶. 本文综述了近年来在CsPbCl3, CsPbBr3, CsPbI3和Mn2+掺杂CsPbX3 (Mn2+:CsPbX3)四种体系中通过金属离子掺杂提高全无机钙钛矿纳米晶光学性能的研究进展及其性能提升的物理机制. 此外, 提出了下一步还需要深入研究的一些问题和策略, 通过这些问题的深入研究, 希望能促使全无机钙钛矿纳米晶在各种光电器件中得到更广泛的应用.
    Metal halide perovskite nanocrystals (NCs) have attracted great attention in the fields of light-emitting diodes, lasers, X-ray imaging, solar cells and photoelectric detectors due to their excellent optoelectronic properties. Compared with organic-inorganic hybrid perovskite NCs, all inorganic perovskite CsPbX3 (X = Cl, Br, I) NCs have good photoelectric properties and high stability. To further improve the photoluminescence (PL) quantum yields (QYs) and stability of CsPbX3 NCs, researchers reduced the defects as nonradiative recombination centers in NCs by the following strategies: 1) surface treatment with different ligands; 2) control of synthesis conditions with halide rich compounds; 3) doping of metal ions. Among them, metal doping is considered as a universal and effective way to adjust the optoelectronic properties of semiconductors. It is found that the type and the concentration of metal ions have great influence on the electronic band structure and PL performance of NCs after the metal ions have been doped into CsPbX3 NCs. At the same time, compared with II-VI and III-V semiconductors, the unique structure of all inorganic perovskite NCs makes the doping of metal ions easier. Appropriate doping can not only enhance the intrinsic optical properties of the NCs without affecting their crystal structure, but also introduce new electronic energy levels into the NCs and new luminescent properties of doped metal ions. Based on metal ions doping strategy, the PLQYs of doped CsPbX3 NCs have been enhanced to nearly 100%. In this work, we summarize recent advances in metal doping of the four typical kinds of perovskite NCs, including CsPbCl3, CsPbBr3, CsPbI3, and Mn2+ doped CsPbX3, and discuss the physical mechanisms of the improved properties through doping metal ions. It should be pointed out that the doping of some metal ions such as Ni2+ and Cd2+ into the above four kinds of NC systems can effectively passivate NC defects, thus improving the PL QY and stability of NCs. In addition, we put forward some personal perspectives on the future research subjects of interest and directions of metal doping for enhanced PL of CsPbX3 NCs, which needs to be further explored in order to promote extensive application of perovskite NCs to various optoelectronic devices.
      通信作者: 曹盛, caosheng@gxu.edu.cn ; 赵家龙, zhaojl@ciomp.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11774134)、广西八桂学者专项和广西高校引进海外高层次人才“百人计划”专项资助的课题
      Corresponding author: Cao Sheng, caosheng@gxu.edu.cn ; Zhao Jia-Long, zhaojl@ciomp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774134), the Special Fund for “Guangxi Bagui Scholars”, China, and the “Guangxi Hundred-Talent Program”, China
    [1]

    Fan Q, Biesold McGee G V, Ma J, Xu Q, Pan S, Peng J, Lin Z 2020 Angew. Chem. Int. Ed. 59 1030Google Scholar

    [2]

    Ma J, Yao Q, McLeod J A, Chang L Y, Pao C W, Chen J, Sham T K, Liu L 2019 Nanoscale 11 6182Google Scholar

    [3]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [4]

    Wang S, Bi C, Yuan J, Zhang L, Tian J 2017 ACS Energy Lett. 3 245Google Scholar

    [5]

    Yoo D, Woo J Y, Kim Y, Kim S W, Wei S H, Jeong S, Kim Y H 2020 J. Phys. Chem. Lett. 11 652Google Scholar

    [6]

    Shi H, Zhang X, Sun X, Zhang X 2019 J. Phys. Chem. C 124 1617Google Scholar

    [7]

    Shi Z, Li Y, Zhang Y, Chen Y, Li X, Wu D, Xu T, Shan C, Du G 2017 Nano Lett. 17 313Google Scholar

    [8]

    Dai J, Xi J, Zu Y, Li L, Xu J, Shi Y, Liu X, Fan Q, Zhang J, Wang S, Yuan F, Dong H, Jiao B, Hou X, Wu Z 2020 Nano Energy 70 104467Google Scholar

    [9]

    Pradhan N 2019 J. Phys. Chem. Lett. 10 5847Google Scholar

    [10]

    Wu L, Hu H, Xu Y, Jiang S, Chen M, Zhong Q, Yang D, Liu Q, Zhao Y, Sun B, Zhang Q, Yin Y 2017 Nano Lett. 17 5799Google Scholar

    [11]

    Wang D, Wu D, Dong D, Chen W, Hao J, Qin J, Xu B, Wang K, Sun X 2016 Nanoscale 8 11565Google Scholar

    [12]

    Zhang Y, Zhu H, Zheng J, Chai G, Song Z, Chen Y, Liu Y, He S, Shi Y, Tang Y, Wang M, Liu W, Jiang L, Ruan S 2019 J. Phys. Chem. C 123 4502Google Scholar

    [13]

    Jia X, Zuo C, Tao S, Sun K, Zhao Y, Yang S, Cheng M, Wang M, Yuan Y, Yang J, Gao F, Xing G, Wei Z, Zhang L, Yip H, Liu M, Shen Q, Yin L, Han L, Liu S, Wang L, Luo J, Tan H, Jin Z, Ding L 2019 Sci. Bull. 64 1532Google Scholar

    [14]

    Zhang J, Hodes G, Jin Z, Liu S F 2019 Angew. Chem. Int. Ed. 58 15596Google Scholar

    [15]

    Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano Lett. 14 6281Google Scholar

    [16]

    Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162Google Scholar

    [17]

    Ma Z, Shi Z, Yang D, Zhang F, Li S, Wang L, Wu D, Zhang Y, Na G, Zhang L, Li X, Zhang Y, Shan C 2019 ACS Energy Lett. 5 385Google Scholar

    [18]

    Yao E P, Yang Z, Meng L, Sun P, Dong S, Yang Y, Yang Y 2017 Adv. Mater. 29 1606859Google Scholar

    [19]

    Wu Z, Wei J, Sun Y, Wu J, Hou Y, Wang P, Wang N, Zhao Z 2019 J. Mater. Sci. 54 6917Google Scholar

    [20]

    Wang X, Shoaib M, Wang X, Zhang X, He M, Luo Z, Zheng W, Li H, Yang T, Zhu X, Ma L, Pan A 2018 ACS Nano 12 6170Google Scholar

    [21]

    Liu H, Zhang X, Zhang L, Yin Z, Wang D, Meng J, Jiang Q, Wang Y, You J 2017 J. Mater. Chem. C 5 6115Google Scholar

    [22]

    Tong G, Jiang M, Son D Y, Qiu L, Liu Z, Ono L K, Qi Y 2020 ACS Appl. Mater. Interfaces 12 14185Google Scholar

    [23]

    Birowosuto M D, Cortecchia D, Drozdowski W, Brylew K, Lachmanski W, Bruno A, Soci C 2016 Sci. Rep. 6 37254Google Scholar

    [24]

    Raino G, Nedelcu G, Protesescu L, Bodnarchuk M I, Kovalenko M V, Mahrt R F, Stoferle T 2016 ACS Nano 10 2485Google Scholar

    [25]

    Ponseca C S, Arlauskas A, Yu H, Wang F, Nevinskas I, Du?da E, Vaičaitis V, Eriksson J, Bergqvist J, Liu X, Kemerink M, Krotkus A n, Inganas O, Gao F 2019 ACS Photonics 6 1175Google Scholar

    [26]

    Akkerman Q A, Raino G, Kovalenko M V, Manna L 2018 Nat. Mater. 17 394Google Scholar

    [27]

    Zhou Y Q, Xu J, Liu J B, Liu B X 2019 J. Phys. Chem. Lett. 10 6118Google Scholar

    [28]

    Ahmed G H, El Demellawi J K, Yin J, Pan J, Velusamy D B, Hedhili M N, Alarousu E, Bakr O M, Alshareef H N, Mohammed O F 2018 ACS Energy Lett. 3 2301Google Scholar

    [29]

    Dutta A, Dutta S K, Das Adhikari S, Pradhan N 2018 ACS Energy Lett. 3 329Google Scholar

    [30]

    Seth S, Ahmed T, De A, Samanta A 2019 ACS Energy Lett. 4 1610Google Scholar

    [31]

    Xu L J, Worku M, He Q, Lin H, Zhou C, Chen B, Lin X, Xin Y, Ma B 2019 J. Phys. Chem. Lett. 10 5836Google Scholar

    [32]

    Yan D, Shi T, Zang Z, Zhou T, Liu Z, Zhang Z, Du J, Leng Y, Tang X 2019 Small 15 1901173Google Scholar

    [33]

    Zheng X, Hou Y, Sun H T, Mohammed O F, Sargent E H, Bakr O M 2019 J. Phys. Chem. Lett. 10 2629Google Scholar

    [34]

    Lu M, Zhang X, Zhang Y, Guo J, Shen X, Yu W W, Rogach A L 2018 Adv. Mater. 30 1804691Google Scholar

    [35]

    Lu M, Zhang X, Bai X, Wu H, Shen X, Zhang Y, Zhang W, Zheng W, Song H, Yu W W, Rogach A L 2018 ACS Energy Lett. 3 1571Google Scholar

    [36]

    Liu W, Lin Q, Li H, Wu K, Robel I, Pietryga J M, Klimov V I 2016 J. Am. Chem. Soc. 138 14954Google Scholar

    [37]

    Begum R, Parida M R, Abdelhady A L, Murali B, Alyami N M, Ahmed G H, Hedhili M N, Bakr O M, Mohammed O F 2017 J. Am. Chem. Soc. 139 731Google Scholar

    [38]

    Zhou Y, Chen J, Bakr O M, Sun H 2018 Chem. Mater. 30 6589Google Scholar

    [39]

    Pradhan N, Das Adhikari S, Nag A, Sarma D D 2017 Angew. Chem. Int. Ed. 56 7038Google Scholar

    [40]

    Yang Z, Wei M, Voznyy O, Todorovic P, Liu M, Quintero Bermudez R, Chen P, Fan J Z, Proppe A H, Quan L N, Walters G, Tan H, Chang J W, Jeng U S, Kelley S O, Sargent E H 2019 J. Am. Chem. Soc. 141 8296Google Scholar

    [41]

    Liang J, Zhao P, Wang C, Wang Y, Hu Y, Zhu G, Ma L, Liu J, Jin Z 2017 J. Am. Chem. Soc. 139 14009Google Scholar

    [42]

    Wang J T, Wang Z, Pathak S, et al. 2016 Energy Environ. Sci. 9 2892Google Scholar

    [43]

    Huang G, Wang C, Xu S, Zong S, Lu J, Wang Z, Lu C, Cui Y 2017 Adv. Mater. 29 1700095Google Scholar

    [44]

    Gao D, Qiao B, Xu Z, Song D, Song P, Liang Z, Shen Z, Cao J, Zhang J, Zhao S 2017 J. Phys. Chem. C 121 20387Google Scholar

    [45]

    Mir W J, Mahor Y, Lohar A, Jagadeeswararao M, Das S, Mahamuni S, Nag A 2018 Chem. Mater. 30 8170Google Scholar

    [46]

    Zhou Y, Zhao Y 2019 Energy Enviro. Sci. 12 1495Google Scholar

    [47]

    Yao J S, Ge J, Han B N, Wang K H, Yao H B, Yu H L, Li J H, Zhu B S, Song J Z, Chen C, Zhang Q, Zeng H B, Luo Y, Yu S H 2018 J. Am. Chem. Soc. 140 3626Google Scholar

    [48]

    Guvenc C M, Yalcinkaya Y, Ozen S, Sahin H, Demir M M 2019 J. Phys. Chem. C 123 24865Google Scholar

    [49]

    De A, Das S, Mondal N, Samanta A 2019 ACS Mater. Lett. 1 116Google Scholar

    [50]

    Chen J, Ma J, Guo S, Chen Y, Zhao Q, Zhang B, Li Z, Zhou Y, Hou J, Kuroiwa Y, Moriyoshi C, Bakr O M, Zhang J, Sun H 2019 Chem. Mater. 31 3974Google Scholar

    [51]

    Das S, De A, Samanta A 2020 J. Phys. Chem. Lett. 11 1178Google Scholar

    [52]

    Mondal N, De A, Samanta A 2018 ACS Energy Lett. 4 32Google Scholar

    [53]

    Yong Z J, Guo S Q, Ma J P, Zhang J Y, Li Z Y, Chen Y M, Zhang B B, Zhou Y, Shu J, Gu J L, Zheng L R, Bakr O M, Sun H T 2018 J. Am. Chem. Soc. 140 9942Google Scholar

    [54]

    Zhao A, Zhang J, Di Y, Guo Y, Shan X, Zhou W, Gan Z 2020 J. Alloys Compd. 830 154731Google Scholar

    [55]

    Liu M, Zhong G, Yin Y, Miao J, Li K, Wang C, Xu X, Shen C, Meng H 2017 Adv. Sci. 4 1700335Google Scholar

    [56]

    van der Stam W, Geuchies J J, Altantzis T, van den Bos K H, Meeldijk J D, Van Aert S, Bals S, Vanmaekelbergh D, de Mello Donega C 2017 J. Am. Chem. Soc. 139 4087Google Scholar

    [57]

    Zhang X, Wang H, Hu Y, Pei Y, Wang S, Shi Z, Colvin V L, Wang S, Zhang Y, Yu W W 2019 J. Phys. Chem. Lett. 10 1750Google Scholar

    [58]

    Li S, Shi Z, Zhang F, Wang L, Ma Z, Yang D, Yao Z, Wu D, Xu T, Tian Y, Zhang Y, Shan C, Li X J 2019 Chem. Mater. 31 3917Google Scholar

    [59]

    Shen C, Zhao Y, Yuan L, Ding L, Chen Y, Yang H, Liu S, Nie J, Xiang W, Liang X 2020 Chem. Eng. J. 382 123005Google Scholar

    [60]

    Bi C, Wang S, Li Q, Kershaw S V, Tian J, Rogach A L 2019 J. Phys. Chem. Lett. 10 943Google Scholar

    [61]

    Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T, Zhang S 2017 ACS Energy Lett. 2 2219Google Scholar

    [62]

    Zhang J, Zhang L, Cai P, Xue X, Wang M, Zhang J, Tu G 2019 Nano Energy 62 434Google Scholar

    [63]

    Yao J S, Ge J, Wang K H, Zhang G, Zhu B S, Chen C, Zhang Q, Luo Y, Yu S H, Yao H B 2019 J. Am. Chem. Soc. 141 2069Google Scholar

    [64]

    Behera R K, Dutta A, Ghosh D, Bera S, Bhattacharyya S, Pradhan N 2019 J. Phys. Chem. Lett. 10 7916Google Scholar

    [65]

    Bera S, Ghosh D, Dutta A, Bhattacharyya S, Chakraborty S, Pradhan N 2019 ACS Energy Lett. 4 1364Google Scholar

    [66]

    Shen X, Zhang Y, Kershaw S V, Li T, Wang C, Zhang X, Wang W, Li D, Wang Y, Lu M, Zhang L, Sun C, Zhao D, Qin G, Bai X, Yu W W, Rogach A L 2019 Nano Lett. 19 1552Google Scholar

    [67]

    Parobek D, Roman B J, Dong Y, Jin H, Lee E, Sheldon M, Son D H 2016 Nano Lett. 16 7376Google Scholar

    [68]

    Yuan X, Ji S, De Siena M C, Fei L, Zhao Z, Wang Y, Li H, Zhao J, Gamelin D R 2017 Chem. Mater. 29 8003Google Scholar

    [69]

    Ji S, Yuan X, Li J, Hua J, Wang Y, Zeng R, Li H, Zhao J 2018 J. Phys. Chem. C 122 23217Google Scholar

    [70]

    Li Q, Ji S, Yuan X, Li J, Fan Y, Zhang J, Zhao J, Li H 2019 J. Phys. Chem. C 123 14849Google Scholar

    [71]

    Wang Y, Cao S, Li J, Li H, Yuan X, Zhao J 2019 CrystEngComm 21 6238Google Scholar

    [72]

    Xing K, Yuan X, Wang Y, Li J, Wang Y, Fan Y, Yuan L, Li K, Wu Z, Li H, Zhao J 2019 J. Phys. Chem. Lett. 10 4177Google Scholar

    [73]

    Ji S, Yuan X, Cao S, Ji W, Zhang H, Wang Y, Li H, Zhao J, Zou B 2020 J. Phys. Chem. Lett. 11 2142Google Scholar

  • 图 1  纳米晶的形貌和晶体结构 (a)和(b)分别为Cu掺杂CsPbCl3纳米晶前后的TEM图片, 插图为单个纳米晶的高分辨TEM图片[49]; (c)为Cu掺杂CsPbCl3纳米晶前后的XRD图谱[49]

    Fig. 1.  Morphology and crystal structure of nanocrystals (NCs): (a), (b) TEM images of CsPbCl3 and Cu doped CsPbCl3 NCs, the inset shows high resolution TEM images of a single NC[49]; (c) XRD patterns of CsPbCl3 and Cu doped CsPbCl3 NCs[49].

    图 2  金属离子掺杂CsPbCl3纳米晶的光学性能和晶体结构 (a) Cu掺杂CsPbCl3纳米晶的吸收光谱和PL光谱[49]; (b) BaCl2掺杂CsPbCl3纳米晶示意图[50]; CdCl2处理前后CsPbCl3纳米晶的PL光谱(c)和PL衰减曲线(d), 图(c)的内插图为处理前后样品在紫外光激发下的数码照片[52]; (e) Ni2+掺杂CsPbCl3纳米晶的DFT计算掺杂能带结构和态密度图, 其中水平虚线表示费米能级[53]

    Fig. 2.  Optical properties and crystal structure of metal ion doped CsPbCl3 NCs. (a) Absorption and PL spectra of CsPbCl3 and Cu-doped CsPbCl3 NCs[49]. (b) Schematic diagram of doping models for BaCl2 doped CsPbCl3[50]. PL spectra (c) and PL decay curves (d) of CsPbCl3 NCs before and after CdCl2 treatment. The inset in panel (c) shows the photos of untreated and treated samples under a UV lamp[52]. (e) Band structure and DOS of Ni2+:CsPbCl3 by DFT calculation. The horizontal dotted line represents the Fermi level[53]

    图 3  金属离子掺杂CsPbBr3纳米晶的光学性能和晶体结构 (a) Sb3+掺杂CsPbBr3示意图[57]; (b) Ni2+掺杂CsPbBr3纳米晶掺杂浓度与PLQY间的关系图[59]; (c) Cu2+掺杂CsPbBr3纳米晶掺杂浓度与PLQY之间的关系图[60]; (d)和(e)分别为CsPbBr3纳米在Cu2+掺杂前后能隙结构[60]; (f) Mg2+掺杂CsPbCl3, CsPbBr3前后的PL谱及PLQY[51]

    Fig. 3.  Optical properties and crystal structure of metal ion doped CsPbBr3 NCs: (a) Schematic illustration of Sb3+ doped CsPbBr3[57]; (b) PLQY vs. Ni2+ doping concentration of CsPbBr3 NCs[59]; (c) PLQY vs. Cu2+ doping concentration of CsPbBr3 NCs; electronic band structures before (d) and after (e) of Cu2+doped CsPbBr3 NCs by DFT calculations[60]; (f) PL spectra and PLQYs before and after Mg2+ doping of CsPbCl3 and CsPbBr3 NCs[51]

    图 4  金属离子掺杂CsPbI3纳米晶的光学性能 (a)不同Cu2+浓度的CsPbBrI2纳米晶PLQY[62]; (b)不同SrI2掺杂浓度的CsPbI3纳米晶PLQY随时间天数的变化[63]; (c)不同Ni2+掺杂浓度的吸收和PL光谱[64]; (d) Sb3+掺杂与(e)非掺杂CsPbI3纳米晶薄膜PL强度随时间的变化[65]; (f)不同Zn掺杂浓度下CsPbI3纳米晶的吸收、PL光谱和PLQY[66]

    Fig. 4.  Optical properties of metal ion doped CsPbI3 NCs: (a) PLQY of CsPbBrI2 NCs solution with different dopant concentration of Cu2+[62]; (b) PLQY values as a function of aged days for unsubstituted and Sr2+-substituted CsPbI3 NCs solutions[63]; (c) absorption and PL spectra of as-synthesized Ni (II) doped CsPbI3 NCs[64]; successive PL spectra of Sb3+ doped (d) and undoped (e) CsPbI3 NCs[65]; (f) the absorption and PL peak maxima and PLQYs of CsPbI3 NCs with different Zn-to-(Zn plus Pb) ratios[66]

    图 5  Mn2+掺杂CsPbX3纳米晶光学性能 (a) Mn2+掺杂前后CsPbCl3纳米晶的PL光谱和UV光照下的数码照片[67]; Mn2+掺杂CsPbCl3纳米晶分别在340 K (b)和360 K (c)热处理下的PL强度及PL寿命随时间的变化[69]

    Fig. 5.  Optical properties of Mn2+ doped CsPbI3 NCs: (a) PL spectra and photographs under UV excitation of CsPbCl3 NCs before and after Mn2+ doping[67]; (b), (c) PL intensity and PL lifetime of Mn2+:CsPbCl3 at different temperature (340 and 360 K) with different time[69].

    图 6  金属离子和Mn2+掺杂CsPbX3纳米晶的光学性能 (a) Mn2+:CsPbX3纳米晶的PLQY与不同Ni/Pb比间的关系[72];(b) CdCl2溶液处理后Mn2+:CsPbX3纳米晶的PL光谱和PL衰减曲线[73]; (c) CdCl2溶液处理后Mn2+:CsPbX3纳米晶经过不同纯化次数在紫外激发下的数码照片[73]

    Fig. 6.  Optical properties of CsPbX3 NCs doped with metal ions and Mn2+: (a) PLQY of Mn2+ doped CsPbX3 NCs vs. Ni/Pb ratios[72]; (b) PL spectrum and PL decay curve of Mn2+ doped CsPbX3 NCs after treatment with CdCl2 solution[73]; (c) digital photos of Mn2+ doped CsPbX3 NCs before and after treatment with CdCl2 solution under UV excitation with different purification times[73].

  • [1]

    Fan Q, Biesold McGee G V, Ma J, Xu Q, Pan S, Peng J, Lin Z 2020 Angew. Chem. Int. Ed. 59 1030Google Scholar

    [2]

    Ma J, Yao Q, McLeod J A, Chang L Y, Pao C W, Chen J, Sham T K, Liu L 2019 Nanoscale 11 6182Google Scholar

    [3]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [4]

    Wang S, Bi C, Yuan J, Zhang L, Tian J 2017 ACS Energy Lett. 3 245Google Scholar

    [5]

    Yoo D, Woo J Y, Kim Y, Kim S W, Wei S H, Jeong S, Kim Y H 2020 J. Phys. Chem. Lett. 11 652Google Scholar

    [6]

    Shi H, Zhang X, Sun X, Zhang X 2019 J. Phys. Chem. C 124 1617Google Scholar

    [7]

    Shi Z, Li Y, Zhang Y, Chen Y, Li X, Wu D, Xu T, Shan C, Du G 2017 Nano Lett. 17 313Google Scholar

    [8]

    Dai J, Xi J, Zu Y, Li L, Xu J, Shi Y, Liu X, Fan Q, Zhang J, Wang S, Yuan F, Dong H, Jiao B, Hou X, Wu Z 2020 Nano Energy 70 104467Google Scholar

    [9]

    Pradhan N 2019 J. Phys. Chem. Lett. 10 5847Google Scholar

    [10]

    Wu L, Hu H, Xu Y, Jiang S, Chen M, Zhong Q, Yang D, Liu Q, Zhao Y, Sun B, Zhang Q, Yin Y 2017 Nano Lett. 17 5799Google Scholar

    [11]

    Wang D, Wu D, Dong D, Chen W, Hao J, Qin J, Xu B, Wang K, Sun X 2016 Nanoscale 8 11565Google Scholar

    [12]

    Zhang Y, Zhu H, Zheng J, Chai G, Song Z, Chen Y, Liu Y, He S, Shi Y, Tang Y, Wang M, Liu W, Jiang L, Ruan S 2019 J. Phys. Chem. C 123 4502Google Scholar

    [13]

    Jia X, Zuo C, Tao S, Sun K, Zhao Y, Yang S, Cheng M, Wang M, Yuan Y, Yang J, Gao F, Xing G, Wei Z, Zhang L, Yip H, Liu M, Shen Q, Yin L, Han L, Liu S, Wang L, Luo J, Tan H, Jin Z, Ding L 2019 Sci. Bull. 64 1532Google Scholar

    [14]

    Zhang J, Hodes G, Jin Z, Liu S F 2019 Angew. Chem. Int. Ed. 58 15596Google Scholar

    [15]

    Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano Lett. 14 6281Google Scholar

    [16]

    Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162Google Scholar

    [17]

    Ma Z, Shi Z, Yang D, Zhang F, Li S, Wang L, Wu D, Zhang Y, Na G, Zhang L, Li X, Zhang Y, Shan C 2019 ACS Energy Lett. 5 385Google Scholar

    [18]

    Yao E P, Yang Z, Meng L, Sun P, Dong S, Yang Y, Yang Y 2017 Adv. Mater. 29 1606859Google Scholar

    [19]

    Wu Z, Wei J, Sun Y, Wu J, Hou Y, Wang P, Wang N, Zhao Z 2019 J. Mater. Sci. 54 6917Google Scholar

    [20]

    Wang X, Shoaib M, Wang X, Zhang X, He M, Luo Z, Zheng W, Li H, Yang T, Zhu X, Ma L, Pan A 2018 ACS Nano 12 6170Google Scholar

    [21]

    Liu H, Zhang X, Zhang L, Yin Z, Wang D, Meng J, Jiang Q, Wang Y, You J 2017 J. Mater. Chem. C 5 6115Google Scholar

    [22]

    Tong G, Jiang M, Son D Y, Qiu L, Liu Z, Ono L K, Qi Y 2020 ACS Appl. Mater. Interfaces 12 14185Google Scholar

    [23]

    Birowosuto M D, Cortecchia D, Drozdowski W, Brylew K, Lachmanski W, Bruno A, Soci C 2016 Sci. Rep. 6 37254Google Scholar

    [24]

    Raino G, Nedelcu G, Protesescu L, Bodnarchuk M I, Kovalenko M V, Mahrt R F, Stoferle T 2016 ACS Nano 10 2485Google Scholar

    [25]

    Ponseca C S, Arlauskas A, Yu H, Wang F, Nevinskas I, Du?da E, Vaičaitis V, Eriksson J, Bergqvist J, Liu X, Kemerink M, Krotkus A n, Inganas O, Gao F 2019 ACS Photonics 6 1175Google Scholar

    [26]

    Akkerman Q A, Raino G, Kovalenko M V, Manna L 2018 Nat. Mater. 17 394Google Scholar

    [27]

    Zhou Y Q, Xu J, Liu J B, Liu B X 2019 J. Phys. Chem. Lett. 10 6118Google Scholar

    [28]

    Ahmed G H, El Demellawi J K, Yin J, Pan J, Velusamy D B, Hedhili M N, Alarousu E, Bakr O M, Alshareef H N, Mohammed O F 2018 ACS Energy Lett. 3 2301Google Scholar

    [29]

    Dutta A, Dutta S K, Das Adhikari S, Pradhan N 2018 ACS Energy Lett. 3 329Google Scholar

    [30]

    Seth S, Ahmed T, De A, Samanta A 2019 ACS Energy Lett. 4 1610Google Scholar

    [31]

    Xu L J, Worku M, He Q, Lin H, Zhou C, Chen B, Lin X, Xin Y, Ma B 2019 J. Phys. Chem. Lett. 10 5836Google Scholar

    [32]

    Yan D, Shi T, Zang Z, Zhou T, Liu Z, Zhang Z, Du J, Leng Y, Tang X 2019 Small 15 1901173Google Scholar

    [33]

    Zheng X, Hou Y, Sun H T, Mohammed O F, Sargent E H, Bakr O M 2019 J. Phys. Chem. Lett. 10 2629Google Scholar

    [34]

    Lu M, Zhang X, Zhang Y, Guo J, Shen X, Yu W W, Rogach A L 2018 Adv. Mater. 30 1804691Google Scholar

    [35]

    Lu M, Zhang X, Bai X, Wu H, Shen X, Zhang Y, Zhang W, Zheng W, Song H, Yu W W, Rogach A L 2018 ACS Energy Lett. 3 1571Google Scholar

    [36]

    Liu W, Lin Q, Li H, Wu K, Robel I, Pietryga J M, Klimov V I 2016 J. Am. Chem. Soc. 138 14954Google Scholar

    [37]

    Begum R, Parida M R, Abdelhady A L, Murali B, Alyami N M, Ahmed G H, Hedhili M N, Bakr O M, Mohammed O F 2017 J. Am. Chem. Soc. 139 731Google Scholar

    [38]

    Zhou Y, Chen J, Bakr O M, Sun H 2018 Chem. Mater. 30 6589Google Scholar

    [39]

    Pradhan N, Das Adhikari S, Nag A, Sarma D D 2017 Angew. Chem. Int. Ed. 56 7038Google Scholar

    [40]

    Yang Z, Wei M, Voznyy O, Todorovic P, Liu M, Quintero Bermudez R, Chen P, Fan J Z, Proppe A H, Quan L N, Walters G, Tan H, Chang J W, Jeng U S, Kelley S O, Sargent E H 2019 J. Am. Chem. Soc. 141 8296Google Scholar

    [41]

    Liang J, Zhao P, Wang C, Wang Y, Hu Y, Zhu G, Ma L, Liu J, Jin Z 2017 J. Am. Chem. Soc. 139 14009Google Scholar

    [42]

    Wang J T, Wang Z, Pathak S, et al. 2016 Energy Environ. Sci. 9 2892Google Scholar

    [43]

    Huang G, Wang C, Xu S, Zong S, Lu J, Wang Z, Lu C, Cui Y 2017 Adv. Mater. 29 1700095Google Scholar

    [44]

    Gao D, Qiao B, Xu Z, Song D, Song P, Liang Z, Shen Z, Cao J, Zhang J, Zhao S 2017 J. Phys. Chem. C 121 20387Google Scholar

    [45]

    Mir W J, Mahor Y, Lohar A, Jagadeeswararao M, Das S, Mahamuni S, Nag A 2018 Chem. Mater. 30 8170Google Scholar

    [46]

    Zhou Y, Zhao Y 2019 Energy Enviro. Sci. 12 1495Google Scholar

    [47]

    Yao J S, Ge J, Han B N, Wang K H, Yao H B, Yu H L, Li J H, Zhu B S, Song J Z, Chen C, Zhang Q, Zeng H B, Luo Y, Yu S H 2018 J. Am. Chem. Soc. 140 3626Google Scholar

    [48]

    Guvenc C M, Yalcinkaya Y, Ozen S, Sahin H, Demir M M 2019 J. Phys. Chem. C 123 24865Google Scholar

    [49]

    De A, Das S, Mondal N, Samanta A 2019 ACS Mater. Lett. 1 116Google Scholar

    [50]

    Chen J, Ma J, Guo S, Chen Y, Zhao Q, Zhang B, Li Z, Zhou Y, Hou J, Kuroiwa Y, Moriyoshi C, Bakr O M, Zhang J, Sun H 2019 Chem. Mater. 31 3974Google Scholar

    [51]

    Das S, De A, Samanta A 2020 J. Phys. Chem. Lett. 11 1178Google Scholar

    [52]

    Mondal N, De A, Samanta A 2018 ACS Energy Lett. 4 32Google Scholar

    [53]

    Yong Z J, Guo S Q, Ma J P, Zhang J Y, Li Z Y, Chen Y M, Zhang B B, Zhou Y, Shu J, Gu J L, Zheng L R, Bakr O M, Sun H T 2018 J. Am. Chem. Soc. 140 9942Google Scholar

    [54]

    Zhao A, Zhang J, Di Y, Guo Y, Shan X, Zhou W, Gan Z 2020 J. Alloys Compd. 830 154731Google Scholar

    [55]

    Liu M, Zhong G, Yin Y, Miao J, Li K, Wang C, Xu X, Shen C, Meng H 2017 Adv. Sci. 4 1700335Google Scholar

    [56]

    van der Stam W, Geuchies J J, Altantzis T, van den Bos K H, Meeldijk J D, Van Aert S, Bals S, Vanmaekelbergh D, de Mello Donega C 2017 J. Am. Chem. Soc. 139 4087Google Scholar

    [57]

    Zhang X, Wang H, Hu Y, Pei Y, Wang S, Shi Z, Colvin V L, Wang S, Zhang Y, Yu W W 2019 J. Phys. Chem. Lett. 10 1750Google Scholar

    [58]

    Li S, Shi Z, Zhang F, Wang L, Ma Z, Yang D, Yao Z, Wu D, Xu T, Tian Y, Zhang Y, Shan C, Li X J 2019 Chem. Mater. 31 3917Google Scholar

    [59]

    Shen C, Zhao Y, Yuan L, Ding L, Chen Y, Yang H, Liu S, Nie J, Xiang W, Liang X 2020 Chem. Eng. J. 382 123005Google Scholar

    [60]

    Bi C, Wang S, Li Q, Kershaw S V, Tian J, Rogach A L 2019 J. Phys. Chem. Lett. 10 943Google Scholar

    [61]

    Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T, Zhang S 2017 ACS Energy Lett. 2 2219Google Scholar

    [62]

    Zhang J, Zhang L, Cai P, Xue X, Wang M, Zhang J, Tu G 2019 Nano Energy 62 434Google Scholar

    [63]

    Yao J S, Ge J, Wang K H, Zhang G, Zhu B S, Chen C, Zhang Q, Luo Y, Yu S H, Yao H B 2019 J. Am. Chem. Soc. 141 2069Google Scholar

    [64]

    Behera R K, Dutta A, Ghosh D, Bera S, Bhattacharyya S, Pradhan N 2019 J. Phys. Chem. Lett. 10 7916Google Scholar

    [65]

    Bera S, Ghosh D, Dutta A, Bhattacharyya S, Chakraborty S, Pradhan N 2019 ACS Energy Lett. 4 1364Google Scholar

    [66]

    Shen X, Zhang Y, Kershaw S V, Li T, Wang C, Zhang X, Wang W, Li D, Wang Y, Lu M, Zhang L, Sun C, Zhao D, Qin G, Bai X, Yu W W, Rogach A L 2019 Nano Lett. 19 1552Google Scholar

    [67]

    Parobek D, Roman B J, Dong Y, Jin H, Lee E, Sheldon M, Son D H 2016 Nano Lett. 16 7376Google Scholar

    [68]

    Yuan X, Ji S, De Siena M C, Fei L, Zhao Z, Wang Y, Li H, Zhao J, Gamelin D R 2017 Chem. Mater. 29 8003Google Scholar

    [69]

    Ji S, Yuan X, Li J, Hua J, Wang Y, Zeng R, Li H, Zhao J 2018 J. Phys. Chem. C 122 23217Google Scholar

    [70]

    Li Q, Ji S, Yuan X, Li J, Fan Y, Zhang J, Zhao J, Li H 2019 J. Phys. Chem. C 123 14849Google Scholar

    [71]

    Wang Y, Cao S, Li J, Li H, Yuan X, Zhao J 2019 CrystEngComm 21 6238Google Scholar

    [72]

    Xing K, Yuan X, Wang Y, Li J, Wang Y, Fan Y, Yuan L, Li K, Wu Z, Li H, Zhao J 2019 J. Phys. Chem. Lett. 10 4177Google Scholar

    [73]

    Ji S, Yuan X, Cao S, Ji W, Zhang H, Wang Y, Li H, Zhao J, Zou B 2020 J. Phys. Chem. Lett. 11 2142Google Scholar

  • [1] 仲婷婷, 郝会颖. 基于大气环境下全无机钙钛矿薄膜及碳基太阳能电池的组分调控和添加剂工程. 物理学报, 2024, 73(23): . doi: 10.7498/aps.73.20241439
    [2] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性. 物理学报, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [3] 刘智高, 陈涛, 胡朝浩, 王殿辉, 王仲民, 李桂银. 柿单宁特征功能基团与金属离子作用的计算分析. 物理学报, 2021, 70(12): 123101. doi: 10.7498/aps.70.20201947
    [4] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [5] 陶鹏程, 黄燕, 周孝好, 陈效双, 陆卫. 掺杂对金属-MoS2界面性质调制的第一性原理研究. 物理学报, 2017, 66(11): 118201. doi: 10.7498/aps.66.118201
    [6] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [7] 朱学文, 徐利春, 刘瑞萍, 杨致, 李秀燕. N-F共掺杂锐钛矿二氧化钛(101)面纳米管的第一性原理研究. 物理学报, 2015, 64(14): 147103. doi: 10.7498/aps.64.147103
    [8] 王庆宝, 张仲, 徐锡金, 吕英波, 张芹. N, Fe, La三掺杂锐钛矿型TiO2能带调节的理论与实验研究. 物理学报, 2015, 64(1): 017101. doi: 10.7498/aps.64.017101
    [9] 刘奎立, 周思华, 陈松岭. 金属离子掺杂对CuO基纳米复合材料的交换偏置调控. 物理学报, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [10] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [11] 杨双波. 温度与外磁场对Si均匀掺杂的GaAs量子阱电子态结构的影响. 物理学报, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [12] 刘志民, 赵谡玲, 徐征, 高松, 杨一帆. 红光量子点掺杂PVK体系的发光特性研究. 物理学报, 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [13] 张丽, 徐明, 余飞, 袁欢, 马涛. Fe, Co共掺杂ZnO薄膜结构及发光特性研究. 物理学报, 2013, 62(2): 027501. doi: 10.7498/aps.62.027501
    [14] 杨双波. 掺杂浓度及掺杂层厚度对Si均匀掺杂的GaAs量子阱中电子态结构的影响. 物理学报, 2013, 62(15): 157301. doi: 10.7498/aps.62.157301
    [15] 吴忠浩, 徐明, 段文倩. Fe掺杂对溶胶凝胶法制备的ZnO: Ni薄膜结构及发光特性的影响. 物理学报, 2012, 61(13): 137502. doi: 10.7498/aps.61.137502
    [16] 徐金荣, 王影, 朱兴凤, 李平, 张莉. N掺杂和N-V共掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2012, 61(20): 207103. doi: 10.7498/aps.61.207103
    [17] 乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军. 过渡金属掺杂钛酸纳米管的电子结构和光学性质研究. 物理学报, 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [18] 金胜哲, 黄祖飞, 明 星, 王春忠, 孟 醒, 陈 岗. 二价金属元素掺杂对LiCoO2体系电子输运性质的影响. 物理学报, 2007, 56(10): 6008-6012. doi: 10.7498/aps.56.6008
    [19] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质. 物理学报, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [20] 钱 磊, 滕 枫, 徐 征, 权善玉, 刘德昂, 王元敏, 王永生, 徐叙瑢. 掺杂二氧化钛纳米管对有机电致发光性能的影响. 物理学报, 2006, 55(2): 929-934. doi: 10.7498/aps.55.929
计量
  • 文章访问数:  16013
  • PDF下载量:  543
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-26
  • 修回日期:  2020-06-08
  • 上网日期:  2020-06-10
  • 刊出日期:  2020-09-20

/

返回文章
返回