搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称自旋-轨道耦合系统的多体量子相干含时演化

邵雅婷 严凯 吴银忠 郝翔

引用本文:
Citation:

非对称自旋-轨道耦合系统的多体量子相干含时演化

邵雅婷, 严凯, 吴银忠, 郝翔

Dynamics of multipartite quantum coherence in asymmetric spin-orbit coupled system

Shao Ya-Ting, Yan Kai, Wu Yin-Zhong, Hao Xiang
PDF
HTML
导出引用
  • 本文以具有非对称性自旋相互作用的三体自旋系统为研究对象, 重点研究了三体量子相干含时演化规律. 采用精确量子对角化和基于量子主方程的数值模拟方法, 讨论了三体量子系统中多种量子相干组分及其退相干. 研究发现, 量子相干组分的含时演化与整个系统的初态量子特性紧密相关. 当初态为可分离纯态时, 在较短时间内, 非对称相互作用有利于增加多体量子相干度. 这些量子相干度因受噪声影响而逐渐衰减. 当初态为类Werner态时, 量子相干度的分布满足加和性, 即三体量子相干度等于所有两体量子相干度之和. 自旋之间非对称相互作用和环境噪声都会引起三体量子相干度大于所有两体量子相干度之和. 这些结论有助于多体量子资源的制备.
    The time evolution of multipartite quantum coherence is studied in a three-body spin system with an asymmetric interaction. The l1 norm measurement is used to estimate the degree of quantum coherence in the spin system. The decoherence of all components of quantum coherence in the three-body spin system is analyzed by the exact diagnolization and numerical method based on quantum master equation. The environmental noise induced by the spontaneous decay can be simulated by the quantum amplitude damping model. It is found that the time evolution of quantum coherence component is closely related to the quantum property of the whole initial state. When the initial state is a separable pure one, the asymmetric interactions can conduce to the enhancement of the degree of multipartite quantum coherence in a short time interval. Under the influence of quantum noise, the degree of quantum coherence decreases gradually. We pay much attention to the spatial distribution of the degree of quantum coherence in a many-body system. The additivity relationship of bipartite component and tripartite coherence can exist if the initial state is chosen to be a Werner-like state. This kind of the coherence additivity between all bipartite components and global coherence can be extended to an arbitrary N-body Werner-like state. But this additivity relationship depends on the l1 norm coherence measurement. Owing to the asymmetric interaction and noise, the degree of tripartite quantum coherence is more than the sum of all degrees of bipartite quantum coherence. The difference between the degree of tripartite coherence and the sum of all degrees of bipartite coherence is increased in a short time interval. The environmental noise can also suppress the difference in the coherence degree. The degree of the nearest neighboring bipartite coherence decreases more quickly than those of other bipartite coherences. The asymmetric interaction gives rise to the improvement in the degree of bipartite coherence and tripartite coherence. The coherence of the next-nearest neighboring two systems can be robust against the environmental noise. These results are helpful in preparing the multipartite quantum resources. We can utilize the system of coupled micro-cavities to realize the quantum spin system with controllable asymmetric interaction. In this way, the global coherence and bipartite coherence can be manipulated effectively by the quantum electromagnetic technology.
      通信作者: 郝翔, xhao@mail.usts.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61875145)和江苏省“十三五”重点培育学科建设基金(批准号: 20168765)资助的课题
      Corresponding author: Hao Xiang, xhao@mail.usts.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61875145) and the Foundation for Key Disciplines of the Thirteenth Five-Year Plan of Jiangsu Province, China (Grant No. 20168765)
    [1]

    吕为民 2019 博士学位论文 (北京: 中国科学技术大学)

    Lv W M 2019 Ph. D. Dissertation (Beijing: University of Science and Technology of China) (in Chinese)

    [2]

    Barney R D, Huele J F S V 2019 Phys. Scr. 94 105105Google Scholar

    [3]

    Ding Z Y, Yang H, Yuan H, Wang D, Yang J, Ye L 2019 Phys. Rev. A 100 022308Google Scholar

    [4]

    Kouzakov K A, Chotorlishvili L, Wtzel J, Berakdar J, Ernst A 2019 Phys. Rev. A 100 022311Google Scholar

    [5]

    Guo W J, Wei L F 2017 Chin. Phys. B 26 010303Google Scholar

    [6]

    Liu Z, Qiu L, Pan F 2017 Quantum Inf. Process. 16 109Google Scholar

    [7]

    Khmelinskii I, Makarov V I 2020 Chem. Phys. 532 110671Google Scholar

    [8]

    Afsaneh E, Bagheri H M, Jafari M 2018 J. Phys. B: At. Mol. Opt. Phys. 51 145502Google Scholar

    [9]

    高明 2011 博士学位论文 (湖南: 国防科学技术大学)

    Gao M 2011 Ph. D. Dissertation (Hunan: National University of Defense Technology) (in Chinese)

    [10]

    Chuchem M, Cohen D 2010 Physica E 42 555Google Scholar

    [11]

    Trushechkin A S 2019 Math Notes 106 986Google Scholar

    [12]

    Rodriguez-Rosario C A, Frauenheim T, Aspuru-Guzik A 2019 Open Syst. Inf. Dyn. 26 1950022Google Scholar

    [13]

    Balazadenh L, Najarbashi G, Tavana A 2018 Sci. Rep. 8 17789Google Scholar

    [14]

    Escalera-Moreno L, Gaita-Ariño A, Coronado E 2019 Phys. Rev. B 100 064405Google Scholar

    [15]

    Lin C W, Sels D, Wang Y B 2020 Phys. Rev. A 101 022320Google Scholar

    [16]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [17]

    Zhao M J, Ma T, Quan Q, Fan H, Pereira R 2019 Phys. Rev. A 100 012315Google Scholar

    [18]

    Hu M L, Fan H 2018 Phys. Rev. A 98 022312Google Scholar

    [19]

    Gao D M, Lv T H 2019 Int. J. Theor. Phys. 58 1195Google Scholar

    [20]

    Sargolzahi I, Mirafzali S Y 2019 Phys. Rev. A 100 042121Google Scholar

    [21]

    张志君 2017 硕士学位论文 (南京: 南京邮电大学)

    Zhang Z J 2017 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)

    [22]

    范洪义 2014 物理学报 63 020302Google Scholar

    Fan H Y 2014 Acta Phys. Sin. 63 020302Google Scholar

    [23]

    田聪, 鹿翔, 张英杰, 夏云杰 2019 物理学报 68 150301Google Scholar

    Tian C, Lu X, Zhang Y J, Xia Y J 2019 Acta Phys. Sin. 68 150301Google Scholar

    [24]

    Yuan Z G, Zhang P, Li S S, Jian J 2016 Ann. Phys. 365 223Google Scholar

    [25]

    Karpat G, Cakmak B, Fanchini F F 2014 Phys. Rev. B 90 104431Google Scholar

    [26]

    Malvezzi A L, Karpat G, Cakmak B, Fanchini F F, Debarba T, Vianna R O 2016 Phys. Rev. B 93 184428Google Scholar

    [27]

    Korenic A, Perovic S, Cirkovic M M, Miquel P A 2020 Prog. Biophys. Mol. Biol. 150 1Google Scholar

    [28]

    Xu P, Hu Y H, Hou X W 2018 Physica A 491 282Google Scholar

    [29]

    Peng H P, Fang M F, Yu M, Zou H M 2018 Int. J. Theor. Phys. 57 1872Google Scholar

    [30]

    Ming F, Wang D, Shi W N, Huang A J, Du M M, Sun W Y, Ye L 2018 Quantum Inf. Process. 17 267Google Scholar

    [31]

    Xie Y X, Gao Y Y 2019 Laser Phys. Lett. 16 045202Google Scholar

    [32]

    Radhakrishnan C, Ermakov I, Byrnes T 2017 Phys. Rev. A 96 012341Google Scholar

    [33]

    Hui N J, Xu Y Y, Wang J, Zhang Y, Hu Z D 2017 Physica B 510 7Google Scholar

    [34]

    Feldman K E 2006 J. Phys. A: Math. Gen. 39 1039Google Scholar

    [35]

    Levitov L S, Rashba E I 2001 Phys. Rev. B 67 115324

    [36]

    Dzyaloshinskii I 1958 Phys. Chem. Solids 4 241Google Scholar

    [37]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [38]

    De Raedt H, Miyashita S, Michielsen K and Machida M 2004 Phys. Rev. B 70 064401Google Scholar

    [39]

    Hartmann M J, Brand O F G S L, Plenio M B 2007 Phys. Rev. Lett. 99 160501Google Scholar

    [40]

    Chen Z X, Zhou Z W, Zhou X, Zhou X F, Guo G C 2010 Phys. Rev. A 81 022303Google Scholar

    [41]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404Google Scholar

  • 图 1  当初态为$ \left| {001} \right\rangle $时, 量子相干组分演化, 参量选取为$ D = 0.2, $ $ \gamma = 0.2, $ $ \varGamma = 0.5, $ $ n = 0.2$, 黑色实线为$ {C_{123}}$, 红色虚线和绿色点划线分别为$ {C_{12}}, {C_{13}}$, 蓝色点线为$ {C_{23}}$

    Fig. 1.  The dynamics of all fractions of quantum coherence for the initial state $ \left| {001} \right\rangle $. The parameters are chosen to be$ D = 0.2, $ $ \gamma = 0.2, $ $ \varGamma = 0.5, $ $ n = 0.2$. The black solid line denotes $ {C_{123}}$, the red dashed and green dot-dashed line are $ {C_{12}}, {C_{13}}$ respectively, and the blue dotted line represents $ {C_{23}}$.

    图 2  当初态为$ \left| {001} \right\rangle $时, 量子相干组分差值的演化, 参量选取为$ \varGamma = 0.5, $ $ n = 0.2$ (a) 当$ \gamma = 0.2$时, 黑色实线对应参数$ D = 0.3, $ 红色虚线对应$ D = 0.5;$ (b)当$ D = 0.2$时, 黑色实线对应参数$ \gamma = 0.3, $ 红色虚线对应$ \gamma = 0.7$

    Fig. 2.  The dynamics of the difference of quantum coherence for the initial state $ \left| {001} \right\rangle $. The parameters are chosen to be $ \varGamma = 0.5, $ $ n = 0.2$: (a) When $ \gamma = 0.2$, the black solid line denotes $ D = 0.3$ the red dashed line is $ D = 0.5;$ (b) When $ D = 0.2$, the black solid line denotes$ \gamma = 0.3, $ the red dashed line is $ \gamma = 0.7$.

    图 3  当初态为W态时, 量子相干组分演化, 参量$ D = 0.2, $ $ \gamma = 0.2, $ $ \varGamma = 0.5, $ $ n = 0.2$,  黑色实线为$ {C_{123}}$, 红色虚线和绿色点划线分别为$ {C_{12}}, {C_{13}}$, 蓝色点线为$ {C_{23}}$

    Fig. 3.  The dynamics of all fractions of quantum coherence for the initial W state. The parameters are chosen to be $ D = 0.2, $ $ \gamma = 0.2, $ $ \varGamma = 0.5, $ $ n = 0.2$. The black solid line denotes $ {C_{123}}$, the red dashed and green dot-dashed line are $ {C_{12}}, {C_{13}}$ respectively, and the blue dotted line represents $ {C_{23}}$.

    图 4  当初态为W态时, 量子相干组分差值的演化, 参量选取为$ \varGamma = 0.5, $ $ n = 0.2$ (a) 当$ \gamma = 0.2$时, 黑色实线对应参数$ D = 0.3, $ 红色虚线对应$ D = 0.5;$ (b)当$ D = 0.2$时, 黑色实线对应参数$ \gamma = 0.3, $ 红色虚线对应$ \gamma = 0.7$

    Fig. 4.  The dynamics of the difference of quantum coherence for the initial W state. The parameters are chosen to be $ \varGamma = 0.5, $ $ n = 0.2$; (a) When $ \gamma = 0.2$, the black solid line denotes $ D = 0.3$ the red dashed line is $ D = 0.5;$ (b) When $ D = 0.2$, the black solid line denotes$ \gamma = 0.3, $ the red dashed line is $ \gamma = 0.7$.

  • [1]

    吕为民 2019 博士学位论文 (北京: 中国科学技术大学)

    Lv W M 2019 Ph. D. Dissertation (Beijing: University of Science and Technology of China) (in Chinese)

    [2]

    Barney R D, Huele J F S V 2019 Phys. Scr. 94 105105Google Scholar

    [3]

    Ding Z Y, Yang H, Yuan H, Wang D, Yang J, Ye L 2019 Phys. Rev. A 100 022308Google Scholar

    [4]

    Kouzakov K A, Chotorlishvili L, Wtzel J, Berakdar J, Ernst A 2019 Phys. Rev. A 100 022311Google Scholar

    [5]

    Guo W J, Wei L F 2017 Chin. Phys. B 26 010303Google Scholar

    [6]

    Liu Z, Qiu L, Pan F 2017 Quantum Inf. Process. 16 109Google Scholar

    [7]

    Khmelinskii I, Makarov V I 2020 Chem. Phys. 532 110671Google Scholar

    [8]

    Afsaneh E, Bagheri H M, Jafari M 2018 J. Phys. B: At. Mol. Opt. Phys. 51 145502Google Scholar

    [9]

    高明 2011 博士学位论文 (湖南: 国防科学技术大学)

    Gao M 2011 Ph. D. Dissertation (Hunan: National University of Defense Technology) (in Chinese)

    [10]

    Chuchem M, Cohen D 2010 Physica E 42 555Google Scholar

    [11]

    Trushechkin A S 2019 Math Notes 106 986Google Scholar

    [12]

    Rodriguez-Rosario C A, Frauenheim T, Aspuru-Guzik A 2019 Open Syst. Inf. Dyn. 26 1950022Google Scholar

    [13]

    Balazadenh L, Najarbashi G, Tavana A 2018 Sci. Rep. 8 17789Google Scholar

    [14]

    Escalera-Moreno L, Gaita-Ariño A, Coronado E 2019 Phys. Rev. B 100 064405Google Scholar

    [15]

    Lin C W, Sels D, Wang Y B 2020 Phys. Rev. A 101 022320Google Scholar

    [16]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [17]

    Zhao M J, Ma T, Quan Q, Fan H, Pereira R 2019 Phys. Rev. A 100 012315Google Scholar

    [18]

    Hu M L, Fan H 2018 Phys. Rev. A 98 022312Google Scholar

    [19]

    Gao D M, Lv T H 2019 Int. J. Theor. Phys. 58 1195Google Scholar

    [20]

    Sargolzahi I, Mirafzali S Y 2019 Phys. Rev. A 100 042121Google Scholar

    [21]

    张志君 2017 硕士学位论文 (南京: 南京邮电大学)

    Zhang Z J 2017 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)

    [22]

    范洪义 2014 物理学报 63 020302Google Scholar

    Fan H Y 2014 Acta Phys. Sin. 63 020302Google Scholar

    [23]

    田聪, 鹿翔, 张英杰, 夏云杰 2019 物理学报 68 150301Google Scholar

    Tian C, Lu X, Zhang Y J, Xia Y J 2019 Acta Phys. Sin. 68 150301Google Scholar

    [24]

    Yuan Z G, Zhang P, Li S S, Jian J 2016 Ann. Phys. 365 223Google Scholar

    [25]

    Karpat G, Cakmak B, Fanchini F F 2014 Phys. Rev. B 90 104431Google Scholar

    [26]

    Malvezzi A L, Karpat G, Cakmak B, Fanchini F F, Debarba T, Vianna R O 2016 Phys. Rev. B 93 184428Google Scholar

    [27]

    Korenic A, Perovic S, Cirkovic M M, Miquel P A 2020 Prog. Biophys. Mol. Biol. 150 1Google Scholar

    [28]

    Xu P, Hu Y H, Hou X W 2018 Physica A 491 282Google Scholar

    [29]

    Peng H P, Fang M F, Yu M, Zou H M 2018 Int. J. Theor. Phys. 57 1872Google Scholar

    [30]

    Ming F, Wang D, Shi W N, Huang A J, Du M M, Sun W Y, Ye L 2018 Quantum Inf. Process. 17 267Google Scholar

    [31]

    Xie Y X, Gao Y Y 2019 Laser Phys. Lett. 16 045202Google Scholar

    [32]

    Radhakrishnan C, Ermakov I, Byrnes T 2017 Phys. Rev. A 96 012341Google Scholar

    [33]

    Hui N J, Xu Y Y, Wang J, Zhang Y, Hu Z D 2017 Physica B 510 7Google Scholar

    [34]

    Feldman K E 2006 J. Phys. A: Math. Gen. 39 1039Google Scholar

    [35]

    Levitov L S, Rashba E I 2001 Phys. Rev. B 67 115324

    [36]

    Dzyaloshinskii I 1958 Phys. Chem. Solids 4 241Google Scholar

    [37]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [38]

    De Raedt H, Miyashita S, Michielsen K and Machida M 2004 Phys. Rev. B 70 064401Google Scholar

    [39]

    Hartmann M J, Brand O F G S L, Plenio M B 2007 Phys. Rev. Lett. 99 160501Google Scholar

    [40]

    Chen Z X, Zhou Z W, Zhou X, Zhou X F, Guo G C 2010 Phys. Rev. A 81 022303Google Scholar

    [41]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404Google Scholar

  • [1] 张骄阳, 丛爽, 王驰, SajedeHarraz. 借助弱测量和环境辅助测量的N量子比特状态退相干抑制. 物理学报, 2022, 71(22): 220303. doi: 10.7498/aps.71.20220760
    [2] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验. 物理学报, 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [3] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干. 物理学报, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [4] 白旭芳, 陈磊, 额尔敦朝鲁. 电磁场中施主中心量子点内磁极化子态寿命与qubit退相干. 物理学报, 2020, 69(14): 147802. doi: 10.7498/aps.69.20200242
    [5] 蓝康, 杜倩, 康丽莎, 姜露静, 林振宇, 张延惠. 基于量子点接触的开放双量子点系统电子转移特性. 物理学报, 2020, 69(4): 040504. doi: 10.7498/aps.69.20191718
    [6] 李海, 邹健, 邵彬, 陈雨, 华臻. 库的量子关联相干辅助系统能量提取的研究. 物理学报, 2019, 68(4): 040201. doi: 10.7498/aps.68.20181525
    [7] 李保民, 胡明亮, 范桁. 量子相干. 物理学报, 2019, 68(3): 030304. doi: 10.7498/aps.68.20181779
    [8] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应. 物理学报, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [9] 丛美艳, 杨晶, 黄燕霞. 在不同初态下Dzyaloshinskii-Moriya相互作用及内禀退相干对海森伯系统的量子纠缠的影响. 物理学报, 2016, 65(17): 170301. doi: 10.7498/aps.65.170301
    [10] 赵虎, 李铁夫, 刘其春, 张颖珊, 刘建设, 陈炜. 三维传输子量子比特的退相干参数表征. 物理学报, 2014, 63(22): 220305. doi: 10.7498/aps.63.220305
    [11] 罗质华. 双能态自旋-晶格声子耦合量子隧道系统的非经典能态和量子相干耗散. 物理学报, 2013, 62(20): 207201. doi: 10.7498/aps.62.207201
    [12] 赵文垒, 王建忠, 豆福全. 混沌微扰导致的量子退相干. 物理学报, 2012, 61(24): 240302. doi: 10.7498/aps.61.240302
    [13] 陈爱喜, 陈渊, 邓黎, 邝耘丰. 非对称半导体量子阱中自发辐射相干诱导透明. 物理学报, 2012, 61(21): 214204. doi: 10.7498/aps.61.214204
    [14] 叶 宾, 须文波, 顾斌杰. 量子Harper模型的量子计算鲁棒性与耗散退相干. 物理学报, 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [15] 房元锋, 杜春光, 李师群. 光子晶体中四能级系统的量子相干效应. 物理学报, 2006, 55(9): 4652-4658. doi: 10.7498/aps.55.4652
    [16] 谭 霞, 张成强, 夏云杰. 双模场与原子相互作用中的量子纠缠和内禀退相干. 物理学报, 2006, 55(5): 2263-2268. doi: 10.7498/aps.55.2263
    [17] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干. 物理学报, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
    [18] 郝三如, 王麓雅. 用外加驱动场压缩有热槽相互作用二态量子系统的退相干性. 物理学报, 2000, 49(4): 610-614. doi: 10.7498/aps.49.610
    [19] 易林, 姚凯伦. 自旋玻璃系统的量子输运方程. 物理学报, 1994, 43(6): 1024-1028. doi: 10.7498/aps.43.1024
    [20] 陈鸿, 章豫梅, 吴翔. 耗散量子隧道系统中的局域—退局域转变. 物理学报, 1989, 38(9): 1497-1500. doi: 10.7498/aps.38.1497
计量
  • 文章访问数:  5218
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-26
  • 修回日期:  2020-08-24
  • 上网日期:  2020-10-22
  • 刊出日期:  2021-01-05

/

返回文章
返回