搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si3N4陶瓷材料晶界特征分布研究

赵明亮 陈松 孙峰 张晶 林燕 张伟儒 王卫国

引用本文:
Citation:

Si3N4陶瓷材料晶界特征分布研究

赵明亮, 陈松, 孙峰, 张晶, 林燕, 张伟儒, 王卫国

Grain boundary character distributions in Si3N4 ceramics

Zhao Ming-Liang, Chen Song, Sun Feng, Zhang Jing, Lin Yan, Zhang Wei-Ru, Wang Wei-Guo
PDF
HTML
导出引用
  • 晶界的结构对氮化硅陶瓷材料的物理和化学性能、特别是高温力学性能有重要影响. 本文利用基于电子背散射衍射技术、体视学及统计学的五参数分析法研究了国产和国外产热等静压烧结的商用氮化硅轴承球样品的晶界特征分布. 结果表明, 两个样品的晶界取向差分布均在约180°处出现异常, 相关晶界占总晶界的比例明显高于随机分布, 其取向差主要包括[0 1 –1 0]/180°和[–1 2 –1 0]/180°, 分别对应Σ2和Σ3晶界. 两个样品中的Σ2晶界的界面匹配基本一致, 均以{0 0 0 1}/{0 0 0 1}基面/基面匹配为主, 但二者Σ3晶界的界面匹配存在很大差异, 表现为国产样品以{–1 2 –1 0}/{–1 2 –1 0}柱面匹配为主, 而国外产样品以{1 0 –1 0}/{1 0 –1 0}柱面匹配为主; 具有{–1 2 –1 0}/{–1 2 –1 0}, {0 0 0 1}/{0 0 0 1}和{1 0 –1 0}/{1 0 –1 0}三种界面匹配特征的晶界, 其面重合点密度分别为2.45 /nm2, 7.95 /nm2和9.10 /nm2, 晶界的结构有序度依次升高. 分析指出, 具有{1 0 –1 0}/{1 0 –1 0}界面匹配特征的Σ3晶界以及具有{0 0 0 1}/{0 0 0 1}界面匹配特征的Σ2晶界是氮化硅陶瓷材料中的一类特殊晶界.
    The structure of grain boundary has an essential influence on the physical and mechanical properties, especially the high-temperature mechanical properties of silicon nitride ceramics. In the present work, the five-parameter analysis method which is established based on electron backscatter diffraction (EBSD), and stereology and statistics are used to study the grain boundary character distributions in the two commercial silicon nitride ceramic ball samples. These two samples are both fabricated by hot isostatic pressing but made in China and abroad, respectively. The results indicate that the misorientation distributions of the two samples radically deviate from the random distribution at a rotation angle of 180°, showing that the frequency of the relevant grain boundaries is dramatically higher than that of the randomly distributed ones. These grain boundaries are mainly those possessing the misorientations of [0 1 –1 0]/180° and [–1 2 –1 0]/180°, corresponding to Σ2 and Σ3 boundaries, respectively. The grain boundary inter-connections (GBICs) of the Σ2 boundaries are basically the same in the two samples, and they are dominated mainly by the {0 0 0 1}/{0 0 0 1} basal-to-basal inter-connection. However, the GBICs of Σ3 boundaries are quite different in the two samples. they primarily the {–1 2 –1 0}/{–1 2 –1 0} prismatic-to-prismatic inter-connection for the Σ3 boundaries in the sample made in China, but it is mainly the {1 0 –1 0}/{1 0 –1 0} prismatic-to-prismatic inter-connection for the Σ3 boundary in the sample made abroad. Crystallographic analysis shows that the planar coincidence site density (PCSD) for the {–1 2 –1 0}/{–1 2 –1 0}, {0 0 0 1}/{0 0 0 1} and {1 0 –1 0}/{1 0 –1 0} GBIC are 2.45 /nm2, 7.95 /nm2 and 9.10 /nm2, respectively, implying that the degree of the structural ordering increases in turn. Further discussion emphasizes that the grain boundaries possessing {1 0 –1 0}/{1 0 –1 0} GBIC and {0 0 0 1}/{0 0 0 1} GBIC should be one type of special boundaries due to their high degrees of structural ordering.
      通信作者: 陈松, gxchensong@126.com ; 王卫国, wang.wei.guo@163.com
    • 基金项目: 中央引导地方科技发展专项(批准号: 2019L3010)资助的课题
      Corresponding author: Chen Song, gxchensong@126.com ; Wang Wei-Guo, wang.wei.guo@163.com
    • Funds: Project supported by the Special Projects of the Central Government to Guide the Corresponding Local Science and Technology Development, China (Grant No. 2019L3010)
    [1]

    Krstic Z, Krstic V D 2012 J. Mater. Sci. 47 535

    [2]

    Zhang Y, Yu X, Gu H, Yao D X, Zuo K H, Xia Y F, Yin J W, Liang H Q, Zeng Y P 2020 Ceram. Int. 47 5656

    [3]

    Santos C, Ribeiro S, Strecker K, Rodrigues J D, Silvaet C R M 2007 J. Mater. Process. Technol. 184 108Google Scholar

    [4]

    Guo G F, Li J B, Yang X Z, Lin H, Liang L, He M S, Tong X G, Yang J 2007 Acta Mater. 54 2311

    [5]

    Blugan G, Wittig D, Kuebler J 2009 Corros. Sci. 51 547Google Scholar

    [6]

    Fox K M, Hellmann J R 2010 Int. J. Appl. Ceram. Technol. 5 138

    [7]

    Vieillard C 2016 Int. J. Fatigue 96 283

    [8]

    Schilm J, Herrmann M, Michael G 2003 J. Eur. Ceram. Soc. 23 577Google Scholar

    [9]

    Tian X H, Zhao J, Wang Y T, Gong F, Qin W Z, Pan H L 2015 Ceram. Int. 43 3381

    [10]

    Guo S Q, Hirosaki N, Nishimura T, Yamamoto Y, Mitomo M 2010 J. Am. Ceram. Soc. 86 1900

    [11]

    Lu H H, Huang J L 2001 Ceram. Int. 27 621Google Scholar

    [12]

    Ahmad S, Ludwig T, Herrmann M, Mahmoud M M, Lippmann W, Seifert H J 2015 J. Eur. Ceram. Soc. 35 2261Google Scholar

    [13]

    Kmra B, Bps A 2019 J. Alloy. Compd. 779 590Google Scholar

    [14]

    Basu B, Vleugels J, Kalin M, Biest O V D 2003 Mater. Sci. Eng., A 359 228Google Scholar

    [15]

    Guan X J, Shi F, Ji H M, Li X W 2019 Mater. Sci. Eng., A 765 138299Google Scholar

    [16]

    Wang H, Guo K, Liu X Q, Hong C F, Wang W G, Dai P Q 2019 Mater. Charact. 149 105Google Scholar

    [17]

    Tokita S, Kokawa H, Kodama S, Sato Y S, Sano Y, Li Z G, Feng K, Wu Y X 2020 Mater. Today Commun. 25 101572Google Scholar

    [18]

    Wang W G, Fang X Y 2008 Mater. Sci. Eng., A 491 199Google Scholar

    [19]

    Kim C S, Hu Y, Rohrer G S, Randle V 2005 Scr. Mater. 52 633Google Scholar

    [20]

    Flávia D C G, Luiz M B D A, Cilene L, Leonardo S A, Jean D, Luiz H D A 2020 J. Mater. Res. Technol. 9 1801Google Scholar

    [21]

    Lai Y F, Zhao S L, Luo T T, Xu Q F, Liu C Y, Liu K, Li Q Z, Yang M J, Zhang S, Han M X, Goto T, Tu R 2020 Ceram. Int. 46 27000Google Scholar

    [22]

    Beladi H, Ghaderi A, Rohrer G S 2019 Philos. Mag. 100 1

    [23]

    Wang W G, Cai C H, Rohrer G S, Gu X F, Lin Y, Chen S, Dai P Q 2018 Mater. Charact. 144 411Google Scholar

    [24]

    Lu X F, Gao X, Ren J Q, Li C X, Guo X, Yan X B, La P Q 2018 Comput. Mater. Sci. 151 296Google Scholar

    [25]

    Qiu J J, Zhang M, Liu X Y, Zhang X X, Tan Z L 2020 Mater. Sci. Eng., A 797 139985Google Scholar

    [26]

    Rohrer G S, El Dasher B S, Miller H M, Rollett A D, Saylor D M 2004 Mater. Res. Soc. Symp. Proc. 819 265

    [27]

    Wang W G, Chen S, Rohrer G S, Chen W Z 2017 Scr. Mater. 128 18Google Scholar

    [28]

    Wang W G, Cui Y K, Rohrer G S, Cai C H, Chen S, Gu X F, Lin Y 2019 Scr. Mater. 170 62Google Scholar

    [29]

    Jeyaraam R, Vedantam S, Sarma V S 2019 Mater. Charact. 152 276Google Scholar

    [30]

    Fang X Y, Wang W G, Cai Z X, Qin C X, Zhou B X 2010 Mater. Sci. Eng., A 527 1571Google Scholar

    [31]

    Pellan M, Lay S, Missiaen J M, Norgren S, Angseryd J, Coronel E, Persson T 2017 Powder Metall. 60 208Google Scholar

    [32]

    Li B, Li G Q, Chen J H, Chen H Y, Xing X M, Hou X M, Li Y 2018 Ceram. Int. 44 9395Google Scholar

  • 图 1  电子背散射衍射(EBSD)全欧拉角去噪前(a)和(b)及去噪后(c)和(d)显微组织 (a), (c)样品E; (b), (d) 样品F

    Fig. 1.  All Euler microstructures before (a) and (b) and after (c) and (d) noise reduction, obtained by electron backscatter diffraction (EBSD): (a), (c) Sample E; (b), (d) sample F.

    图 2  经50 ℃氢氟酸(HF)浸泡240 min后样品E(a)和F(b)的二次电子显微组织(SEM)

    Fig. 2.  The secondary electron microscopy (SEM) of sample E (a) and F (b) after soaking in hydrofluoric acid at 50 ℃ for 240 min.

    图 3  取向成像显微图(a)和(b)及Si3N4/ Si3N4晶界网络(c)和(d) (a), (c) 样品E; (b)和(d) 样品F

    Fig. 3.  Orientation imaging microscopy (OIM) (a) and (b), and Si3N4/Si3N4 grain boundary networks (c) and (d): (a), (c) Sample E; (b), (d) sample F.

    图 4  φ2 = 40°截面的取向分布函数图 (a) 样品E; (b) 样品F

    Fig. 4.  φ2 = 40° section of orientation distribution function (ODF): (a) Sample E; (b) sample F.

    图 5  Si3N4/Si3N4晶界取向差分布图 (a) 样品E; (b) 样品F

    Fig. 5.  Misorientation distributions of Si3N4/Si3N4 grain boundaries of sample E (a) and F (b).

    图 6  Si3N4/ Si3N4晶界随旋转轴分布 (a) 样品E; (b) 样品F

    Fig. 6.  The frequencies of the gain boundaries with varied rotation axis in sample E (a) and F(b).

    图 7  以[0 1 –1 0]((a)和(c))及[–1 2 –1 0] ((b)和(d))为旋转轴的Si3N4/Si3N4晶界取向差分布 (a), (b) 样品E; (c), (d) 样品F

    Fig. 7.  Misorientation distributions of Si3N4/Si3N4 grain boundaries possessing rotation axis [0 1 –1 0] (a) and (c) and [–1 2 –1 0] (b) and (d): (a), (b) Sample E; (c), (d) sample F.

    图 8  两Si3N4晶粒呈[0 1 –1 0]/180°(Σ2)取向差关系对应的重合原子示意图 (a) 2个等价N1原子重合图; (b) 6个等价N2原子重合图; (c) 6个等价Si原子重合图. 其中蓝色圆圈和红色圆圈分别代表旋转前后的原子, 绿色圆点代表重合原子. 每个示意图均包含为50个Si3N4晶胞

    Fig. 8.  Schematic illustrations for the coincident atoms when two Si3N4 crystals have a misorientation of [0 1 –1 0]/180°(Σ2): (a) Two identical N1 atoms; (b) 6 identical N2 atoms; (c) 6 identical Si atoms. Blue and red circles stand for the atoms before and after rotation, respectively. Green dots represent the coincident atoms. Each plot contains 50 unit cells of Si3N4.

    图 9  两Si3N4晶粒呈[–1 2 –1 0]/180°(Σ3)取向差关系对应的重合原子示意图 (a) 2个等价N1原子重合图; (b) 6个等价N2原子重合图; (c) 6个等价Si原子重合图. 其中蓝色圆圈和红色圆圈分别代表旋转前后的原子, 绿色圆点代表重合原子. 每个示意图均包含为50个Si3N4晶胞

    Fig. 9.  Schematic illustrations for the coincident atoms when two Si3N4 crystals have a misorientation of [–1 2 –1 0]/180°(Σ3): (a) Two identical N1 atoms; (b) 6 identical N2 atoms; (c) 6 identical Si atoms. Blue and red circles stand for the atoms before and after rotation, respectively. Green dots represent the coincident atoms. Each plot contains 50 unit cells of Si3N4.

    图 10  样品E((a)和(c))和F((b)和(d))[0 1 –1 0]/180°((a)和(b))以及[–1 2 –1 0]/180°((c)和(d))晶界的晶界面分布FPA图(投影在(0 0 0 1)内) (a)和(b)中的, 为分布强点等同位置; (c)和(d)中的 分别为分布强点和次强点等同位置

    Fig. 10.  (0 0 0 1) projections of grain boundary plane distributions of [0 1 –1 0]/180°((a) and (b))and [–1 2 –1 0]/180°((c) and (d)) grain boundaries in sample E ((a) and (c)) and sample F ((b) and(d)). , and in Figure (a) and (b) stand for the identical positions of the strongest distribution, while and in Figure (c) and (d) represent the identical positions of the strongest and the second strongest distribution, respectively.

    图 11  样品E((a)和(b))和F((c)和(d))各自的Si3N4/ Si3N4全部晶界的晶界面分布FPA图((a)和(c))及其分布强点和次强点位置示意图((b)和(d))(投影在(0 0 0 1)内). , 为分布最强点等同位置, 为分布次强点等同位置

    Fig. 11.  (0 0 0 1) projections of grain boundary plane distributions of all grain boundaries insample E ((a) and (b)) and F ((c) and (d)). and stand for the identical positions of the strongest distributions, while represents the identical positions of the second strongest distribution.

    图 12  对应于图10的样品E((a)和(c))和F((b)和(d))[0 1 –1 0]/180°((a)和(b))以及[–1 2 –1 0]/180°((c)和(d))晶界的晶界面分布示意图(投影在(0 0 0 1)内)

    Fig. 12.  Schematic illustrations of grain boundary plane distributions of [0 1 –1 0]/180° ((a) and (b)) and [–1 2 –1 0]/180° ((c) and (d)) grain boundaries in sample E ((a) and (c)) and F ((b) and (d)).

    表 1  样品E和F中[0 1 –1 0]/180°和[–1 2 –1 0]/180°晶界的GBIC及对应的PCSD值

    Table 1.  The GBICs and PCSD values of [0 1 –1 0]/180° and [–1 2 –1 0]/180° grain boundaries observed in sample E and F

    Sample ESample F
    Misorientation
    (u v t w/θ)
    GBICsPCSD
    /(/nm2)
    Misorientation
    (u v t w/θ)
    GBICsPCSD
    /(/nm2)
    [0 1 –1 0]/180°{–2 2 0 1}/{–2 2 0 1}1.49[0 1 –1 0]/180°{–2 1 1 2}/{–2 1 1 2}3.5
    (Σ2){–2 1 1 2}/{–2 1 1 2}3.5(Σ2){0 0 0 1}/{0 0 0 1}7.95
    {0 0 0 1}/{0 0 0 1}7.95
    [–1 2 –1 0]/180°{–5 3 2 1}/{2 3 –5 –1}0.93[–1 2 –1 0]/180°{–8 1 7 1}/{7 1 –8 –1}1.63
    (Σ3){–1 2 –1 0}/{–1 2 –1 0}2.45(Σ3){1 0 –1 0}/{1 0 –1 0}9.1
    下载: 导出CSV
  • [1]

    Krstic Z, Krstic V D 2012 J. Mater. Sci. 47 535

    [2]

    Zhang Y, Yu X, Gu H, Yao D X, Zuo K H, Xia Y F, Yin J W, Liang H Q, Zeng Y P 2020 Ceram. Int. 47 5656

    [3]

    Santos C, Ribeiro S, Strecker K, Rodrigues J D, Silvaet C R M 2007 J. Mater. Process. Technol. 184 108Google Scholar

    [4]

    Guo G F, Li J B, Yang X Z, Lin H, Liang L, He M S, Tong X G, Yang J 2007 Acta Mater. 54 2311

    [5]

    Blugan G, Wittig D, Kuebler J 2009 Corros. Sci. 51 547Google Scholar

    [6]

    Fox K M, Hellmann J R 2010 Int. J. Appl. Ceram. Technol. 5 138

    [7]

    Vieillard C 2016 Int. J. Fatigue 96 283

    [8]

    Schilm J, Herrmann M, Michael G 2003 J. Eur. Ceram. Soc. 23 577Google Scholar

    [9]

    Tian X H, Zhao J, Wang Y T, Gong F, Qin W Z, Pan H L 2015 Ceram. Int. 43 3381

    [10]

    Guo S Q, Hirosaki N, Nishimura T, Yamamoto Y, Mitomo M 2010 J. Am. Ceram. Soc. 86 1900

    [11]

    Lu H H, Huang J L 2001 Ceram. Int. 27 621Google Scholar

    [12]

    Ahmad S, Ludwig T, Herrmann M, Mahmoud M M, Lippmann W, Seifert H J 2015 J. Eur. Ceram. Soc. 35 2261Google Scholar

    [13]

    Kmra B, Bps A 2019 J. Alloy. Compd. 779 590Google Scholar

    [14]

    Basu B, Vleugels J, Kalin M, Biest O V D 2003 Mater. Sci. Eng., A 359 228Google Scholar

    [15]

    Guan X J, Shi F, Ji H M, Li X W 2019 Mater. Sci. Eng., A 765 138299Google Scholar

    [16]

    Wang H, Guo K, Liu X Q, Hong C F, Wang W G, Dai P Q 2019 Mater. Charact. 149 105Google Scholar

    [17]

    Tokita S, Kokawa H, Kodama S, Sato Y S, Sano Y, Li Z G, Feng K, Wu Y X 2020 Mater. Today Commun. 25 101572Google Scholar

    [18]

    Wang W G, Fang X Y 2008 Mater. Sci. Eng., A 491 199Google Scholar

    [19]

    Kim C S, Hu Y, Rohrer G S, Randle V 2005 Scr. Mater. 52 633Google Scholar

    [20]

    Flávia D C G, Luiz M B D A, Cilene L, Leonardo S A, Jean D, Luiz H D A 2020 J. Mater. Res. Technol. 9 1801Google Scholar

    [21]

    Lai Y F, Zhao S L, Luo T T, Xu Q F, Liu C Y, Liu K, Li Q Z, Yang M J, Zhang S, Han M X, Goto T, Tu R 2020 Ceram. Int. 46 27000Google Scholar

    [22]

    Beladi H, Ghaderi A, Rohrer G S 2019 Philos. Mag. 100 1

    [23]

    Wang W G, Cai C H, Rohrer G S, Gu X F, Lin Y, Chen S, Dai P Q 2018 Mater. Charact. 144 411Google Scholar

    [24]

    Lu X F, Gao X, Ren J Q, Li C X, Guo X, Yan X B, La P Q 2018 Comput. Mater. Sci. 151 296Google Scholar

    [25]

    Qiu J J, Zhang M, Liu X Y, Zhang X X, Tan Z L 2020 Mater. Sci. Eng., A 797 139985Google Scholar

    [26]

    Rohrer G S, El Dasher B S, Miller H M, Rollett A D, Saylor D M 2004 Mater. Res. Soc. Symp. Proc. 819 265

    [27]

    Wang W G, Chen S, Rohrer G S, Chen W Z 2017 Scr. Mater. 128 18Google Scholar

    [28]

    Wang W G, Cui Y K, Rohrer G S, Cai C H, Chen S, Gu X F, Lin Y 2019 Scr. Mater. 170 62Google Scholar

    [29]

    Jeyaraam R, Vedantam S, Sarma V S 2019 Mater. Charact. 152 276Google Scholar

    [30]

    Fang X Y, Wang W G, Cai Z X, Qin C X, Zhou B X 2010 Mater. Sci. Eng., A 527 1571Google Scholar

    [31]

    Pellan M, Lay S, Missiaen J M, Norgren S, Angseryd J, Coronel E, Persson T 2017 Powder Metall. 60 208Google Scholar

    [32]

    Li B, Li G Q, Chen J H, Chen H Y, Xing X M, Hou X M, Li Y 2018 Ceram. Int. 44 9395Google Scholar

  • [1] 颜劭祺, 高继昆, 陈越, 马尧, 朱晓东. 电子束透射氮化硅薄膜窗产生低密度等离子体. 物理学报, 2024, 73(14): 144102. doi: 10.7498/aps.73.20240302
    [2] 陈伟龙, 郭榕榕, 仝钰申, 刘莉莉, 周圣岚, 林金海. 亚禁带光照对CdZnTe晶体中晶界电场分布的影响. 物理学报, 2022, 71(22): 226101. doi: 10.7498/aps.71.20220896
    [3] 杨朝曦, 柳文波, 张璁雨, 贺新福, 孙正阳, 贾丽霞, 师田田, 恽迪. Fe-Cr合金晶界偏析及辐照加速晶界偏析的相场模拟. 物理学报, 2021, 70(11): 116101. doi: 10.7498/aps.70.20201840
    [4] 张军, 陈文雄, 郑成武, 李殿中. γ-α相变中不同晶界特征下铁素体生长形貌的相场模拟. 物理学报, 2017, 66(7): 070701. doi: 10.7498/aps.66.070701
    [5] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变. 物理学报, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [6] 石大为, 吴美玲, 杨昌平, 任春林, 肖海波, 王开鹰. Pr0.7Ca0.3MnO3陶瓷晶界势垒的交流特性. 物理学报, 2013, 62(2): 026201. doi: 10.7498/aps.62.026201
    [7] 成鹏飞, 李盛涛, 李建英. ZnO-Bi2O3系压敏陶瓷的晶界电子结构. 物理学报, 2010, 59(1): 560-565. doi: 10.7498/aps.59.560
    [8] 刘玮书, 张波萍, 李敬锋, 张海龙, 赵立东. Co1-xNixSb3-ySey热电输运中晶界和点缺陷的耦合散射效应. 物理学报, 2008, 57(6): 3791-3797. doi: 10.7498/aps.57.3791
    [9] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [10] 王俊忠, 吉 元, 王晓冬, 刘志民, 罗俊锋, 李志国. Al互连线和Cu互连线的显微结构. 物理学报, 2007, 56(1): 371-375. doi: 10.7498/aps.56.371
    [11] 张 颖, 吕广宏, 邓胜华, 王天民. Al晶界的第一性原理拉伸试验. 物理学报, 2006, 55(6): 2901-2907. doi: 10.7498/aps.55.2901
    [12] 张国英, 刘贵立, 曾梅光, 钱存富. 钢中小角度晶界区的电子结构及掺杂效应. 物理学报, 2000, 49(7): 1344-1347. doi: 10.7498/aps.49.1344
    [13] 陈俊芳, 王卫乡, 刘颂豪, 任兆杏. 氮化硅薄膜的微结构. 物理学报, 1998, 47(9): 1529-1535. doi: 10.7498/aps.47.1529
    [14] 郑振华, 陈羽, 缪容之. BaTiO3半导体陶瓷从PTC特性向边界层电容效应过渡问题探讨——晶界势垒模型的应用. 物理学报, 1996, 45(9): 1543-1550. doi: 10.7498/aps.45.1543
    [15] 江伟林, 王瑞兰, 朱沛然, 王长安, 徐天冰, 李宏成, 翟永亮, 任孟眉, 周俊思. 直流磁控溅射YBCO非晶薄膜的卢瑟福背散射研究. 物理学报, 1994, 43(4): 660-666. doi: 10.7498/aps.43.660
    [16] 陈志雄, 黄卓和, 何爱琴, 石滨. ZnO-Bi2O3-Sb2O3-BaO系陶瓷的晶界相与抗退降性能. 物理学报, 1994, 43(6): 1035-1040. doi: 10.7498/aps.43.1035
    [17] 段玉华, 葛庭燧, 张天宜. 双晶铝晶界弛豫的转变温度. 物理学报, 1993, 42(2): 297-303. doi: 10.7498/aps.42.297
    [18] 蔡树芝, 牟季美, 张立德, 程本培. 纳米非晶氮化硅键态结构的X射线径向分布函数研究. 物理学报, 1992, 41(10): 1620-1626. doi: 10.7498/aps.41.1620
    [19] 李宗全, 张立德, 何怡贞. 六角结构金属α—Ti中的小角晶界. 物理学报, 1985, 34(8): 1064-1067. doi: 10.7498/aps.34.1064
    [20] 尹道乐, 张金龙, 孔庆虎. 在氯化钠晶体中在亚晶界附近位错的分布. 物理学报, 1964, 20(2): 191-192. doi: 10.7498/aps.20.191
计量
  • 文章访问数:  5802
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 修回日期:  2021-07-30
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回