搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向先进光源线站等大科学装置的低温X射线能谱仪原理及应用进展

张硕 崔伟 金海 陈六彪 王俊杰 伍文涛 吴秉骏 夏经铠 宋艳汝 杨瑾屏 翁祖谦 刘志

引用本文:
Citation:

面向先进光源线站等大科学装置的低温X射线能谱仪原理及应用进展

张硕, 崔伟, 金海, 陈六彪, 王俊杰, 伍文涛, 吴秉骏, 夏经铠, 宋艳汝, 杨瑾屏, 翁祖谦, 刘志

Development of basic theory and application of cryogenic X-ray spectrometer in light sources and X-ray satellite

Zhang Shuo, Cui Wei, Jin Hai, Chen Liu-Biao, Wang Jun-Jie, Wu Wen-Tao, Wu Bing-Jun, Xia Jing-Kai, Song Yan-Ru, Yang Jin-Ping, Weng Tsu-Chien, Liu Zhi
PDF
HTML
导出引用
  • 低温X射线能谱仪兼具高能量分辨率、高探测效率、低噪声、无死层等特点, 能量分辨率与X射线入射方向无关, 在暗弱的弥散X射线能谱测量方面具有明显优势. 基于同步辐射及自由电子激光的先进光源线站、加速器、高电荷态离子阱、空间X射线卫星这类大科学装置的快速发展对X射线探测器提出了更高要求, 因而低温X射线能谱仪被逐步引入到APS, NSLS, LCLS-II, Spring-8, SSNL, ATHENA, HUBS等大科学装置与能谱测量相关科学研究中. 本文从低温X射线能谱仪的工作原理及分类、能谱仪系统结构、主要性能指标以及国内外大科学装置研究现状及发展趋势等方面作简要综述.
    Cryogenic X-ray spectrometers are advantageous in the spectrum research for weak and diffusive X-ray source due to their high energy resolution, high detection efficiency, low noise level and non-dead-layer properties. Their energy resolution independent of the incident X-ray direction also makes them competitive in diffusion source detection. The requirements for X-ray spectrometers have heightened in recent years with the rapid development of large scientific facilities where X-ray detection is demanded, including beamline endstations in synchrotron and X-ray free electron laser facilities, accelerators, highly charged ion traps, X-ray space satellites, etc. Because of their excellent performances, cryogenic X-ray detectors are introduced into these facilities, typical examples of which are APS, NSLS, LCLS-II, Spring-8, SSNL, ATHENA, HUBS. In this paper, we review the cryogenic X-ray spectrometers, from the working principle and classification, system structure, major performance characteristics to the research status and trend in large scientific facilities in the world.
      通信作者: 刘志, liuzhi@shanghaitech.edu.cn
      作者简介:
      刘志, 教授, 上海科技大学大科学中心主任兼物质学院副院长. 1994年毕业于北京大学, 获得大气物理与大气环境专业理学学士, 在美国斯坦福大学获电子工程硕士、物理学博士. 回国前长期在斯坦福线性加速器国家实验室和美国劳伦斯伯克利国家实验室从事科学研究. 20多年来主要从事同步辐射原位谱学及其他相关技术的应用研究, 特别是近常压光电子能谱对催化和电化学体系表界面的原位表征测量. 受“国家特聘专家”资助, 2013年全职回国后, 主要从事同步辐射和自由电子激光原位表征研究和大科学装置建设, 主持完成了基金委国家重大科研仪器设备研制专项“基于上海同步辐射光源的能源环境新材料原位电子结构综合研究平台(SiP·ME2)研制”和国家重大科技基础设施“活细胞结构与功能成像等线站工程”. 目前参与领导十三五国家重大科技基础设施“上海硬X射线自由电子激光装置”的建设. 发表同行评议论文220余篇
    • 基金项目: 国家自然科学基金国家重大科研仪器设备研制专项(批准号: 11927805)、国家自然科学基金青年科学基金(批准号: 12005134, 11803014)和上海市浦江人才计划(批准号: 20PJ1410900)资助的课题.
      Corresponding author: Liu Zhi, liuzhi@shanghaitech.edu.cn
    • Funds: Project supported by the Special Fund for Research on National Major Research Instrument and Facilities of the National Natural Science Fundation of China (Grant No. 11927805), the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 12005134, 11803014), and the Shanghai Pujiang Program, China (Grant No. 20PJ1410900)
    [1]

    McCammon D 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp1−34

    [2]

    Friedrich S 2006 J. Synchrotron Rad. 13 159Google Scholar

    [3]

    Uhlig J, Doriese W B, Fowler J W, Swetz D S, Jaye C, Fischer D A, Reintsema C D, Bennett D A, Vale L R, Mandal U 2015 J. Synchrotron Rad. 22 766Google Scholar

    [4]

    Bechstein S, Beckhoff B, Fliegauf R, Weser J, Ulm G 2004 Spectrochim. Acta, Part B 59 215Google Scholar

    [5]

    Drury O B, Friedrich S 2005 IEEE Trans. Appl. Superconduct. 15 613Google Scholar

    [6]

    Friedrich S, Funk T, Drury O, Labov S E, Cramer S P 2002 Rev. Sci. Instrum. 73 1629Google Scholar

    [7]

    Ohkubo M, Shiki S, Ukibe M, Matsubayashi N, Kitajima Y, Nagamachi S 2012 Sci. Rep. 2 831Google Scholar

    [8]

    Ukibe M, Fujii G, Shiki S, Kitajima Y, Ohkubo M 2016 J. Low Temp. Phys. 184 194Google Scholar

    [9]

    Uhlig J, Fullagar W, Ullom J N, Doriese W B, Fowler J W, Swetz D S, Gador N, Canton S E, Kinnunen K, Maasilta I J 2013 Phys. Rev. Lett. 110 138302Google Scholar

    [10]

    Doriese W B, Abbamonte P, Alpert B K, Bennett D A, Denison E V, Fang Y, Fischer D A, Fitzgerald C P, Fowler J W, Gard J D 2017 Rev. Sci. Instrum. 88 053108Google Scholar

    [11]

    Joe Y I, O’Neil G C, Miaja-Avila L, Fowler J W, Jimenez R, Silverman K L, Swetz D S, Ullom J N 2015 J. Phys. B: At. Mol. Opt. Phys. 49 024003Google Scholar

    [12]

    O’Neil G C, Miaja-Avila L, Joe Y I, Alpert B K, Balasubramanian M, Sagar D M, Doriese W, Fowler J W, Fullagar W K, Chen N 2017 J. Phys. Chem. Lett. 8 1099Google Scholar

    [13]

    Miaja-Avila L, O’Neil G C, Joe Y I, Alpert B K, Damrauer N H, Doriese W B, Fatur S M, Fowler J W, Hilton G C, Jimenez R 2016 Phys. Rev. X 6 031047Google Scholar

    [14]

    Okada S, Bennett D A, Curceanu C, Doriese W B, Fowler J W, Gard J D, Gustafsson F P, Hashimoto T, Hayano R S, Hirenzaki S 2016 Prog. Theor. Exp. Phys. 2016 091D01Google Scholar

    [15]

    Yamada S, Tatsuno H, Okada S, Hashimoto T 2020 J. Low Temp. Phys. 200 418Google Scholar

    [16]

    Hashimoto T, Bennett D A, Doriese W B, Durkin M S, Fowler J W, Gard J D, Hayakawa R, Hayashi T, Hilton G C, Ichinohe Y 2020 J. Low Temp. Phys. 199 1018Google Scholar

    [17]

    Shen Y, Xiao J, Yao K, Yang Y, Lu D, Fu Y Q, Tu B S, Hutton R, Zou Y M 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 326Google Scholar

    [18]

    Betancourt-Martinez G L, Adams J, Bandler S, Beiersdorfer P, Brown G, Chervenak J, Doriese R, Eckart M, Irwin K, Kelley R 2014 Proc. SPIE 9144 91443UGoogle Scholar

    [19]

    Brown G V, Adams J S, Beiersdorfer P, Clementson J, Frankel M, Kahn S M, Kelly R L, Kilbourne C A, Koutroumpa D, Leutenegger M 2009 AIP Conf. Proc. 1185 446Google Scholar

    [20]

    Porter F S, Almy R, Apodaca E, Figueroa-Feliciano E, Galeazzi M, Kelley R, McCammon D, Stahle C K, Szymkowiak A E, Sanders W T 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 444 220Google Scholar

    [21]

    McCammon D, Barger K, Brandl D E, Brekosky R P, Crowder S G, Gygax J D, Kelley R L, Kilbourne C A, Lindeman M A, Porter F S 2008 J. Low Temp. Phys. 151 715Google Scholar

    [22]

    Adams J S, Baker R, Bandler S R, Bastidon N, Danowski M E, Doriese W B, Eckart M E, FigueroaFeliciano E, Goldfinger D C, Heine S N T 2020 J. Low Temp. Phys. 199 1062Google Scholar

    [23]

    ZuHone J A, Markevitch M, Zhuravleva I 2016 Astrophys. J. 817 110Google Scholar

    [24]

    The Hitomi Collaboration 2016 Nature 535 117Google Scholar

    [25]

    Kilbourne C A, Adams J S, Brekosky R P, Chervenak J A, Chiao M P, Eckart M E, Figueroa-Feliciano E, Galeazzi M, Grein C, Jhabvala C A 2018 J. Astron. Telesc. Instrum. Syst. 4 011214Google Scholar

    [26]

    Barcons X, Barret D, Decourchelle A, den Herder J W, Fabian A C, Matsumoto H, Lumb D, Nandra K, Piro L, Smith R K 2017 Astron. Nachr. 338 153Google Scholar

    [27]

    Barret D, Trong T L, Den Herder J-W, Piro L, Barcons X, Huovelin J, Kelley R, Mas-Hesse J M, Mitsuda K, Paltani S 2016 Proc. SPIE 9905 99052FGoogle Scholar

    [28]

    Cui W, Bregman J N, Bruijn M P, Chen L B, Chen Y, Cui C, Fang T T, Gao B, Gao H, Gao J R 2020 Proc. SPIE 11444 114442SGoogle Scholar

    [29]

    Wang Y R, Wang S F, Li F J, Liang Y J, Ding J, Chen Y L, Cui W, Huang R, Hua X Y, Jin H 2020 Proc. SPIE 11444 114449CGoogle Scholar

    [30]

    Carpenter M H, Croce M P, Baker Z K, Batista E R, Caffrey M P, Fontes C J, Koehler K E, Kossmann S E, McIntosh K G, Rabin M W 2020 J. Low Temp. Phys. 200 437Google Scholar

    [31]

    Ohno M, Irimatsugawa T, Miura Y, Takahashi H, Ikeda T, Otani C, Sakama M, Matsufuji N 2018 J. Low Temp. Phys. 193 1222Google Scholar

    [32]

    Smith R, Ohno M, Miura Y, Nakada N, Mitsuya Y, Takahashi H, Ikeda T, Otani C, Sakama M, Matsufuji N 2020 J. Low Temp. Phys. 199 1012Google Scholar

    [33]

    Yamaguchi A, Muramatsu H, Hayashi T, Yuasa N, Nakamura K, Takimoto M, Haba H, Konashi K, Watanabe M, Kikunaga H 2019 Phys. Rev. Lett. 123 222501Google Scholar

    [34]

    Rabin M W 2009 AIP Conf. Proc. 1185 725

    [35]

    Winkler R, Hoover A S, Rabin M W, Bennett D A, Doriese W B, Fowler J W, Hays-Wehle J, Horansky R D, Reintsema C D, Schmidt D R 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 770 203Google Scholar

    [36]

    丁洪林 2010 核辐射探测器 (哈尔滨: 哈尔滨工程大学出版社) 第376页

    Ding H L 2010 Nuclear Radiation Detector (Harbin: Harbin Engineering University Press) p376 (in Chinese)

    [37]

    沈扬 2011 博士学位论文 (上海: 复旦大学)

    Shen Y 2011 Ph. D. Dissertation (Shanghai: Fudan University) (in Chinese)

    [38]

    Frank M, Hiller L J, Le Grand J B, Mears C A, Labov S E, Lindeman M A, Netel H, Chow D, Barfknecht A T 1998 Rev. Sci. Instrum. 69 25Google Scholar

    [39]

    Moseley S H, Mather J C, McCammon D 1984 J. Appl. Phys. 56 1257Google Scholar

    [40]

    McCammon D 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp35−62

    [41]

    Irwin K D, Hilton G C 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp63−150

    [42]

    Fleischmann A, Enss C, Seidel G M 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp151−216

    [43]

    Li D, Alpert B K, Becker D T, Bennett D A, Carini G A, Cho H M, Doriese W B, Dusatko J E, Fowler J W, Frisch J C 2018 J. Low Temp. Phys. 193 1287Google Scholar

    [44]

    Unger D, Abeln A, Enss C, Fleischmann A, Hengstler D, Kempf S, Gastaldo L 2020 arXiv:2010.15348 [physics.ins-det]

    [45]

    Newbury D E, Irwin K D, Hilton G C, Wollman D A, Small J A, Martinis J M 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp267−312

    [46]

    Collins S A, Rodriguez J I, Ross Jr R G 2002 AIP Conf. Proc. 613 1053Google Scholar

    [47]

    Wikus P, Rutherford J M, Trowbridge S N, McCammon D, Adams J S, Bandler S R, Das R, Doriese W B, Eckart M E, Figueroa-Feliciano E 2008 International Cryocooler Conference-16th Atlanta, Georgia, USA, May 17−20, 2008 p547

    [48]

    Fujimoto R, Mitsuda K, Yamasaki N, Takei Y, Tsujimoto M, Sugita H, Sato Y, Shinozaki K, Ohashi T, Ishisaki Y 2010 Cryogenics 50 488Google Scholar

    [49]

    Prouve’ T, Duval J M, Charles I, Yamasaki N Y, Mitsuda K, Nakagawa T, Shinozaki K, Tokoku C, Yamamoto R, Minami Y 2018 Cryogenics 89 85Google Scholar

    [50]

    Wang J, Pan C, Zhang T, Luo K Q, Xi X T, Wu X L, Zheng J P, Chen L B, Wang J J, Zhou Y 2019 Sci. Bull. 64 219Google Scholar

    [51]

    McCammon D, Almy R, Apodaca E e a, Tiest W B, Cui W, Deiker S, Galeazzi M, Juda M, Lesser A, Mihara T 2002 Astrophys. J. 576 188Google Scholar

    [52]

    Maehata K, Hara T, Ito T, Yamanaka Y, Tanaka K, Mitsuda K, Yamasaki N Y 2014 Cryogenics 61 86Google Scholar

    [53]

    Silver E, Lin T, Vicenzi E, Toth M, Westphal A, Beeman J, Haller E E, Burchell M 2012 43rd Lunar and Planetary Science Conference Woodlands, Texas ,USA, March 19−23, 2012 p2511

    [54]

    Carpenter M H, Friedrich S, Hall J A, Harris J, Cantor R 2014 J. Low Temp. Phys. 176 222Google Scholar

    [55]

    Ukibe M, Fujii G, Shiki S, Kitajima Y, Ohkubo M 2016 J. Low Temp. Phys. 184 200Google Scholar

    [56]

    Fujii G, Ukibe M, Ohkubo M 2015 Supercond. Sci. Technol. 28 104005Google Scholar

    [57]

    Fujii G, Ukibe M, Shiki S, Ohkubo M 2017 X-Ray Spectrometry 46 325Google Scholar

    [58]

    Fujii G, Ukibe M, Shiki S, Ohkubo M 2019 Microsc. Microanal. 25 262Google Scholar

    [59]

    Kishimoto M, Ukibe M, Katagiri M, Nakazawa M, Kurakado M 1996 Nucl. Instrum. Methods Phys. Res., Sec. A 370 126

    [60]

    Shiki S, Zen N, Ukibe M, Ohkubo M 2009 AIP Conf. Proc. 1185 409

    [61]

    Ullom J N, Bennett D A 2015 Supercond. Sci. Technol. 28 084003Google Scholar

    [62]

    Alpert B, Balata M, Bennett D, Biasotti M, Boragno C, Brofferio C, Ceriale V, Corsini D, Day P K, De Gerone M 2015 Eur. Phys. J. C 75 1Google Scholar

    [63]

    Irwin K D 2020 J. Supercond. Novel Magn. 34 1601Google Scholar

    [64]

    Kempf S, Fleischmann A, Gastaldo L, Enss C 2018 J. Low Temp. Phys. 193 365Google Scholar

    [65]

    Friedrich S 2020 Magnetic Microcalorimeter (MMC) Gamma Detectors with Ultra-High Energy Resolution (Livermore: Lawrence Livermore National Laboratory) Report No. LLNL-TR-744808

    [66]

    Wegner M, Karcher N, Krömer O, Richter D, Ahrens F, Sander O, Kempf S, Weber M, Enss C 2018 J. Low Temp. Phys. 193 462Google Scholar

    [67]

    Cantor R 1996 SQUID Sensors: Fundamentals, Fabrication and Applications (Heidelberg: Springer) pp179−233

    [68]

    Eschweiler J D 2014 Ph. D. Dissertation (Hamburg: University of Hamburg)

    [69]

    Sakai K, Takei Y, Yamamoto R, Yamasaki N Y, Mitsuda K, Hidaka M, Nagasawa S, Kohjiro S, Miyazaki T 2014 J. Low Temp. Phys. 176 400Google Scholar

    [70]

    de la Broïse X, Le Coguie A, Sauvageot J L, Pigot C, Coppolani X, Moreau V, d Hollosy S, Knarosovski T, Engel A 2018 J. Low Temp. Phys. 193 578Google Scholar

    [71]

    Navick X F, Sauvageot J L, de La Broise X, Charvolin T, Thibon R, Lugiez F, Le Coguie A 2020 J. Low Temp. Phys. 200 187Google Scholar

    [72]

    Sauvageot J L, de la Broïse X, Charvolin T, Thibon R, Lugiez F, Le Coguie A, Zahir A 2018 Proc. SPIE 10699 106992IGoogle Scholar

    [73]

    Chiao M P, Adams J, Goodwin P, Hobson C W, Kelley R L, Kilbourne C A, McCammon D, McGuinness D S, Moseley S J, Porter F S 2016 Proc. SPIE 9905 99053MGoogle Scholar

    [74]

    Wulf D, Jaeckel F, McCammon D, Chervenak J A, Eckart M E 2020 J. Appl. Phys. 128 174503Google Scholar

    [75]

    Fowler J W, Alpert B K, Doriese W B, Fischer D A, Jaye C, Joe Y I, O’Neil G C, Swetz D S, Ullom J N 2015 Astrophys. J. Suppl. Ser. 219 35Google Scholar

    [76]

    Titus C J, Li D, Alpert B K, Cho H M, Fowler J W, Lee S J, Morgan K M, Swetz D S, Ullom J N, Wessels A 2020 J. Low Temp. Phys. 200 1038Google Scholar

    [77]

    Jaklevic J, Kirby J A, Klein M P, Robertson A S, Brown G S, Eisenberger P 1977 J. Microsc. 199 37Google Scholar

    [78]

    Vila F D, Jach T, Elam W T, Rehr J J, Denlinger J D 2011 J. Phys. Chem. A 115 3243Google Scholar

    [79]

    Lee S J, Titus C J, Alonso Mori R, Baker M L, Bennett D A, Cho H M, Doriese W B, Fowler J W, Gaffney K J, Gallo A 2019 Rev. Sci. Instrum. 90 113101Google Scholar

    [80]

    Li S, Lee S J, Wang X, Yang W, Huang H, Swetz D S, Doriese W B, O’Neil G C, Ullom J N, Titus C J 2019 J. Am. Chem. Soc. 141 12079Google Scholar

    [81]

    Titus C J, Baker M L, Lee S J, Cho H M, Doriese W B, Fowler J W, Gaffney K, Gard J D, Hilton G C, Kenney C 2017 J. Chem. Phys. 147 214201Google Scholar

    [82]

    Peng G, Degroot F M F, Hämäläinen K, Moore J A, Wang X, Grush M M, Hastings J B, Siddons D P, Armstrong W H 1994 J. Am. Chem. Soc. 116 2914Google Scholar

    [83]

    Bergmann U, Horne C R, Collins T J, Workman J M, Cramer S P 1999 Chem. Phys. Lett. 302 119Google Scholar

    [84]

    Kurien K C 1971 J. Chem. Soc. B 2081Google Scholar

    [85]

    Miles C J, Brezonik P L 1981 Environ. Sci. Technol. 15 1089Google Scholar

    [86]

    Abbamonte P, Rusydi A, Smadici S, Gu G D, Sawatzky G A, Feng D L 2005 Nat. Phys. 1 155Google Scholar

    [87]

    Abbamonte P, Venema L, Rusydi A, Sawatzky G A, Logvenov G, Bozovic I 2002 Science 297 581Google Scholar

    [88]

    da Silva Neto E H, Comin R, He F, Sutarto R, Jiang Y, Greene R L, Sawatzky G A, Damascelli A 2015 Science 347 282Google Scholar

    [89]

    Serban Smadici, Abbamonte P, Taguchi M, Kohsaka Y, Sasagawa T, Azuma M, Takano M, Takagi H 2007 Phys. Rev. B 75 075104Google Scholar

    [90]

    Fuchs O, Weinhardt L, Blum M, Weigand M, Umbach E, Bär M, Heske C, Denlinger J, Chuang Y D, McKinney W 2009 Rev. Sci. Instrum. 80 063103Google Scholar

    [91]

    Ghiringhelli G, Piazzalunga A, Dallera C, Trezzi G, Braicovich L, Schmitt T, Strocov V N, Betemps R, Patthey L, Wang X 2006 Rev. Sci. Instrum. 77 113108Google Scholar

    [92]

    Ghiringhelli G, Le Tacon M, Minola M, Blanco-Canosa S, Mazzoli C, Brookes N B, De Luca G M, Frano A, Hawthorn D G, He F 2012 Science 337 821Google Scholar

    [93]

    Joe Y I, Fang Y, Lee S, Sun S X L, de la Peňa G A, Doriese W B, Morgan K M, Fowler J W, Vale L R, Rodolakis F, McChesney J L, Ullom J N, Swetz D S, Abbamonte P 2020 Phys. Rev. Appl. 13 034026Google Scholar

    [94]

    Fullagar W, Uhlig J, Walczak M, Canton S, Sundström V 2008 Rev. Sci. Instrum. 79 103302Google Scholar

    [95]

    Yan D K 2019 Ph. D. Dissertation (Evanston, Illinois: Northwestern University)

    [96]

    Guruswamy T, Gades L, Miceli A, Patel U, Quaranta O 2021 IEEE Trans. Appl. Supercond. 31 2101605

    [97]

    Yamada S, Ichinohe Y, Tatsuno H, Hayakawa R, Suda H, Ohashi T, Ishisaki Y, Uruga T, Sekizawa O, Nitta K 2021 Prev. Sci. Instrum. 92 013103

    [98]

    Morgan K M, Becker D T, Bennett D A, Doriese W B, Gard J D, Irwin K D, Lee S J, Li D, Mates J A B, Pappas C G 2019 IEEE Trans. Appl. Supercond. 29 1Google Scholar

    [99]

    Miaja Avila L, O’Neil G C, Joe Y I, Morgan K M, Fowler J W, Doriese W B, Ganly B, Lu D, Ravel B, Swetz D S 2021 X Ray Spectrom. 50 9Google Scholar

    [100]

    George S J, Carpenter M H, Friedrich S, Cantor R 2020 J. Low Temp. Phys. 200 479Google Scholar

    [101]

    Palosaari M R J, Käyhkö M, Kinnunen K M, Laitinen M, Julin J, Malm J, Sajavaara T, Doriese W B, Fowler J, Reintsema C 2016 Phys. Rev. Appl. 6 024002Google Scholar

    [102]

    Käyhkö M, Laitinen M, Arstila K, Maasilta I J, Sajavaara T 2019 Nucl. Instrum. Methods Phys. Res., Sect. B 447 59Google Scholar

    [103]

    Szypryt P, O’Neil G C, Takacs E, Tan J N, Buechele S W, Naing A S, Bennett D A, Doriese W B, Durkin M, Fowler J W 2019 Rev. Sci. Instrum. 90 123107Google Scholar

    [104]

    Cui W, Chen L B, Gao B, Guo F L, Jin H, Wang G L, Wang L, Wang J J, Wang W, Wang Z S 2020 J. Low Temp. Phys. 199 502Google Scholar

    [105]

    Porter F S, Almy R, Apodaca E, Figueroa-Feliciano E, Galeazzi M, Kelley R, McCammon D, Stahle C K, Szymkowiak A E, Sanders W T 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 444 175Google Scholar

    [106]

    Erickcek A L, Steinhardt P J, McCammon D, McGuire P C 2007 Phys. Rev. D 76 042007Google Scholar

    [107]

    Takahashi T, Mitsuda K, Kelley R, Aarts H, Aharonian F, Akamatsu H, Akimoto F, Allen S, Anabuki N, Angelini L 2012 Proc. SPIE 8443 84431ZGoogle Scholar

    [108]

    Goldfinger D C, Adams J S, Baker R, Bandler S R, Danowski M E, Doriese W B, Eckart M E, Figueroa-Feliciano E, Hilton G C, Hubbard A J F 2016 Proc. SPIE 9905 99054SGoogle Scholar

    [109]

    Pajot F, Barret D, Lam-Trong T, Den Herder J W, Piro L, Cappi M, Huovelin J, Kelley R, Mas-Hesse J M, Mitsuda K 2018 J. Low Temp. Phys. 193 901Google Scholar

    [110]

    Bandler S R, Chervenak J A, Datesman A M, Devasia A M, DiPirro M J, Sakai K, Smith S J, Stevenson T R, Yoon W, Bennett D A 2019 J. Astron. Telesc. Instrum. Syst. 5 021017

    [111]

    Gaskin J A, Swartz D, Vikhlinin A A, Özel F, Gelmis K E E, Arenberg J W, Bandler S R, Bautz M W, Civitani M M, Dominguez A 2019 J. Astron. Telesc. Instrum. Syst. 5 021001Google Scholar

    [112]

    Redfern D, Nicolosi J, Höhne J, Weiland R, Simmnacher B, Hollerich C 2002 J. Res. Nat. Inst. Stand. Technol. 107 621Google Scholar

    [113]

    Wollman D A, Hilton G C, Irwin K D, Dulcie L L, Bergren N F, Newbury D E, Woo K S, Liu B Y H, Diebold A C, Martinis J M 1998 AIP Conf. Proc. 449 799Google Scholar

    [114]

    Szypryt P, Bennett D A, Boone W J, Dagel A L, Dalton G, Doriese W B, Durkin M, Fowler J W, Garboczi E J, Gard J D 2021 IEEE Trans. Appl. Supercond. 31 1Google Scholar

    [115]

    Uehara S, Takai Y, Shirose Y, Fujii Y 2012 J. Mineral. Petrol. Sci. 107 105Google Scholar

    [116]

    Hara T, Tanaka K, Maehata K, Mitsuda K, Yamasaki N Y, Ohsaki M, Watanabe K, Yu X, Ito T, Yamanaka Y 2010 J. Electron Microsc. 5 9Google Scholar

    [117]

    Maehata K, Hara T, Mitsuda K, Hidaka M, Tanaka K, Yamanaka Y 2016 J. Low Temp. Phys. 184 5Google Scholar

    [118]

    Yamada K, Kawakami N, Moronaga T, Hayashi K, Ichihara C, Hara T 2020 Appl. Phys. Express 13 082008Google Scholar

    [119]

    Bockhorn L, Paulsen M, Beyer J, Kossert K, Loidl M, Nähle O J, Ranitzsch P O, Rodrigues M 2020 J. Low Temp. Phys. 199 298Google Scholar

    [120]

    Kang C S, Jeon J A, Jo H S, Kim G B, Kim H L, Kim I, Kim S R, Kim Y H, Kwon D H, Lee C 2017 Supercond. Sci. Technol. 30 084011Google Scholar

    [121]

    Eliseev S, Blaum K, Block M, Chenmarev S, Dorrer H, Düllmann C E, Enss C, Filianin P E, Gastaldo L, Goncharov M 2015 Phys. Rev. Lett. 115 062501Google Scholar

  • 图 1  STJ由一个超导-非超导-超导的结构组成. 当X射线与超导层作用时打破库珀对准粒子. 准粒子在穿越非超导层时会形成电压信号, 通过电压信号幅度反推入射X射线的能量. 本图参考文献[38]绘制

    Fig. 1.  STJ detector is composed of a superconducting/non-superconducting/superconducting structure. When the X-ray photon interacts with the superconducting layer, the Cooper pairs are broken, creating quasiparticle excitations. The tunneling of these quasiparticles through the non-superconducting layer gives rise to the voltage signal. By analyzing the amplitude of the voltage signal, the energy of incident X-ray can be calculated. Referenced from Ref. [38]

    图 2  (a)微量能器的核心芯片结构, 包含吸收体、热学弱连接G1、温度计、热学弱连接G2、热沉等结构; (b)温度计是区别微量能器的标志, 它决定了偏置电路以及信号放大器类型

    Fig. 2.  (a) Schematic of the core structure of the microcalorimeter chip, including structures like absorber, weak thermal connection-1, thermometer, weak thermal connection-2, heat sink and so on. (b) The thermometer is the sign distinguishing different microcalorimeters, which determines the bias circuit and the type of signal amplifier.

    图 3  先进光源线站上早期常用制冷机的结构图 (a) TES-X射线探测器的光敏面结构; (b) TES-X射线探测器的外形; (c)与制冷机冷头连接的探测鼻结构. 该制冷机的主体高度约1.2 m, 支撑结构与应用场景相关, 会进一步加大体积

    Fig. 3.  Structure diagram of early refrigerators for advanced beamline stations: (a) Structure of photosensitive surface of TES X-ray detector; (b) outlook of the TES-X-ray detector; (c) structure of the detector “snout” protrusion connected to the cold head of the refrigerator. The main body of the refrigerator is about 1.2 m high, and the supporting structure is determined by the application field, which will further increase the whole volume.

    图 4  XQC探空火箭上绝热去磁制冷机的结构图, 为了适应探空火箭环境, 该制冷机在机械结构强度以及体积方面做了特别设计. 同时, 探空火箭实验测量周期短, 因此该制冷机的液氦存储体积可以设计得比较小. 本图参考文献[51]绘制

    Fig. 4.  Structure diagram of the adiabatic demagnetization refrigerator (ADR) on the XQC sounding rocket. In order to adapt to the environment of the sounding rocket, the refrigerator is specially designed in terms of mechanical structure strength and volume. At the same time, the measurement period of the sounding rocket experiment is short, thus the storage volume of liquid helium of the refrigerator can be designed to be relatively small. Referenced from Ref. [51].

    图 5  应用于SEM上低温X射线能谱仪所用稀释制冷机的结构图, 该制冷机为了减小对SEM系统的振动干扰, 做了很多隔振结构, 整体高度约2 m. 本图参考自文献[52]

    Fig. 5.  Structure diagram of the dilution refrigerator (DR) used in the cryogenic X-ray spectrometer for SEM application. In order to reduce the vibration interference to the SEM system, the refrigerator has made many vibration-isolation structures with an overall height of about 2 m. Referenced from Ref. [52].

    图 6  STJ的结构图, 最外层的Ta用于X射线的吸收, 中间的Al-AlOx -Al作为约瑟夫森结产生电压信号, 本图参考自文献[54]

    Fig. 6.  Structure diagram of the STJ detector, the outermost Ta layer is used for X-ray absorption, and the middle Al-AlOx -Al structure is used as a Josephson Junction to generate voltage signals. Referenced from Ref. [54].

    图 7  三种微量能器的结构图, 他们的区别主要体现在温度计结构以及吸收体材质和厚度上

    Fig. 7.  Structure diagrams of three different kinds of microcalorimeter. They are mainly differed in the structure of the thermometer, and the material and thickness of the absorber.

    图 8  非复用SQUID的结构图, 右侧的单级SQUID将电流信号放大为电压信号, 左下侧的SQUID阵列将信号作进一步放大以降低在后端信号传输时杂散信号的干扰. 本图参考自文献[68]

    Fig. 8.  Structure diagram of the none-multiplexed SQUID. The single-stage SQUID on the right amplifies the current signal into a voltage signal, and the SQUID array on the lower left amplifies the signal further to reduce the interference of stray signals when the back-end signal is transmitted. Referenced from Ref. [68] .

    图 9  复用SQUID的原理图. 左上图为TDM-SQUID, 通过控制超导开关来决定读取哪一通道. 右上图为CDM-SQUID, 通过控制超导开关和后期反编码实现所有通道同时读取. 左下图为FDM-SQUID, 通过频谱移动区分和鉴别不同像素TES的信号. 右下图是RF-SQUID, 通过微波频段的频谱移动鉴别不同像素的信号

    Fig. 9.  Schematic diagram of multiplexed SQUID. The picture on the top left shows that TDM-SQUID, decides which channel to read by controlling the superconducting switch. The picture on the top right shows that CDM-SQUID, can read all channels at the same time by controlling the superconducting switch and post-reverse coding. The image below on the left shows that FDM-SQUID, distinguishes and discriminates the signals of different TES pixel through spectrum shift. The image below on the right shows RF-SQUID, distinguishes different pixels by the frequency spectrum shifting of the microwave band.

    图 10  一种高密度封装示意图, 主要包含高密度电缆、低温热沉、低温电路、转接插头、磁屏蔽、电磁屏蔽、红外遮光膜等结构

    Fig. 10.  Schematic diagram of a high-density package, which mainly includes high-density cables, low-temperature heat sink, low-temperature electronics, transfer plugs, magnetic filed shielding, electromagnetic shielding, infrared filter etc.

    图 11  一种用于半导体型微量能器的JFET放大器结构示意图. 本图参考自文献[73]

    Fig. 11.  Schematic diagram of the structure of a JFET amplifier for the semiconductor microcalorimeter. Referenced from Ref. [73].

    图 12  一个完整SQUID放大器结构示意图, SQUID 阵列一般置于4 K温区, 亦可根据实验需求将其放置于更低温区

    Fig. 12.  Complete schematic diagram of the SQUID amplifier structure. The SQUID array is generally placed in the 4 K temperature region, but also can be placed in the lower temperature region according to the experimental requirements.

    图 13  不同X射线能谱仪的能量分辨率对比图, 同时给出了不同元素K线及L线的本征展宽用于直观比较各能谱仪的性能差异. 本图摘自文献[3]

    Fig. 13.  Comparison diagram of energy resolution of different X-ray spectrometers. The natural line widths of K-line and L-line of different elements are given to directly compare the performance of different spectrometers. Referenced from Ref. [3].

    图 14  (a)能量分辨率、(b)探测效率及(c), (d)探测器种类对信噪比的影响, 图(c)和(d)为不同探测器在不同元素处性能比较. 本图参考自文献[2]

    Fig. 14.  (a) Effects of energy resolution, (b) detection efficiency and (c), (d) the type of detector on the signal-to-noise ratio. Panel (c) and (d) compare the performance of different detectors at different element positions. Referenced from Ref. [2].

    图 15  利用低温X射线能谱仪测量到的两种氮化物的XES. 本图摘自文献[3]

    Fig. 15.  Nitrogen X-ray emission spectrum (XES) of two kinds of nitrides measured by cryogenic X-ray spectrometer. Referenced from Ref. [3].

    图 16  利用低温X射线能谱仪测得的不同稀释浓度Fe元素样品的吸收谱

    Fig. 16.  XAS spectrum of Fe elements in different concentrations of samples, which were measured by cryogenic X-ray spectrometer.

    图 17  上海科技大学低温X射线能谱仪研制团队采集得到的PM2.5样品能谱

    Fig. 17.  Energy spectrum of PM2.5 samples collected by the Cryogenics X-ray Spectrometer Development team of Shanghai Tech University.

    图 18  利用低温X射线能谱仪与PIXE结合获得的超宽X射线谱. 本图引自文献[101]

    Fig. 18.  Ultra-wide X-ray spectrum obtained by the combination of cryogenic X-ray spectrometer and PIXE. Referenced from Ref. [101].

    图 19  利用MMC对不同核素进行标定的误差对比情况, 两家研发单位的MMC结构、制冷系统乃至数据分析均相互独立, 仍然得到了十分一致的标定效果. 本图摘自文献[65]

    Fig. 19.  Different MMC detectors from two research and development unit are used to compare the calibration errors of different nuclides. Both MMC structures, refrigeration systems and data analysis of these two research and development units are independent of each other, however still result in very consistent calibration results. Referenced from Ref. [65].

    表 1  针对软X射线波段几种X射线能谱仪的性能参数对比

    Table 1.  Comparison of performance parameters of several X-ray spectrometers in soft X-ray range.

    DetectorResolution
    $E_{\rm{FWHM}}$/eV
    Count rate
    /cps
    Efficiency
    (O)
    P/B
    ratio
    Ge (typical)130$3\times 10^5$0.150∶1
    Ge (best)60$3\times 10^4$0.003200∶1
    STJ (typical)20$10^5$$10^{-4}$200∶1
    STJ (best)10$10^6$$10^{-3}$1000∶1
    Grating (typical)0.5$10^5$$10^{-6}$200∶1
    Grating (best)0.2$10^6$$10^{-5}$1000∶1
    Grating (best)0.2$10^6$$3\times 10^{-4}$200∶1
    下载: 导出CSV

    表 2  安装于ATHENA卫星的低温X射线能谱仪关键参数

    Table 2.  Key parameters of cryogenic X-ray spectrometer installed on ATHENA satellite.

    参数设计指标备注
    能量范围/keV0.2—12
    能量分辨率2.5 eV@7 keV
    FOV/arcmin5
    像素尺寸/arcsc< 5
    单像素计数率/cps0.25保证80%的事例优
    于设计能量分辨率
    非X射线背景/(cps·cm-2)$5^{-3}$
    下载: 导出CSV
  • [1]

    McCammon D 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp1−34

    [2]

    Friedrich S 2006 J. Synchrotron Rad. 13 159Google Scholar

    [3]

    Uhlig J, Doriese W B, Fowler J W, Swetz D S, Jaye C, Fischer D A, Reintsema C D, Bennett D A, Vale L R, Mandal U 2015 J. Synchrotron Rad. 22 766Google Scholar

    [4]

    Bechstein S, Beckhoff B, Fliegauf R, Weser J, Ulm G 2004 Spectrochim. Acta, Part B 59 215Google Scholar

    [5]

    Drury O B, Friedrich S 2005 IEEE Trans. Appl. Superconduct. 15 613Google Scholar

    [6]

    Friedrich S, Funk T, Drury O, Labov S E, Cramer S P 2002 Rev. Sci. Instrum. 73 1629Google Scholar

    [7]

    Ohkubo M, Shiki S, Ukibe M, Matsubayashi N, Kitajima Y, Nagamachi S 2012 Sci. Rep. 2 831Google Scholar

    [8]

    Ukibe M, Fujii G, Shiki S, Kitajima Y, Ohkubo M 2016 J. Low Temp. Phys. 184 194Google Scholar

    [9]

    Uhlig J, Fullagar W, Ullom J N, Doriese W B, Fowler J W, Swetz D S, Gador N, Canton S E, Kinnunen K, Maasilta I J 2013 Phys. Rev. Lett. 110 138302Google Scholar

    [10]

    Doriese W B, Abbamonte P, Alpert B K, Bennett D A, Denison E V, Fang Y, Fischer D A, Fitzgerald C P, Fowler J W, Gard J D 2017 Rev. Sci. Instrum. 88 053108Google Scholar

    [11]

    Joe Y I, O’Neil G C, Miaja-Avila L, Fowler J W, Jimenez R, Silverman K L, Swetz D S, Ullom J N 2015 J. Phys. B: At. Mol. Opt. Phys. 49 024003Google Scholar

    [12]

    O’Neil G C, Miaja-Avila L, Joe Y I, Alpert B K, Balasubramanian M, Sagar D M, Doriese W, Fowler J W, Fullagar W K, Chen N 2017 J. Phys. Chem. Lett. 8 1099Google Scholar

    [13]

    Miaja-Avila L, O’Neil G C, Joe Y I, Alpert B K, Damrauer N H, Doriese W B, Fatur S M, Fowler J W, Hilton G C, Jimenez R 2016 Phys. Rev. X 6 031047Google Scholar

    [14]

    Okada S, Bennett D A, Curceanu C, Doriese W B, Fowler J W, Gard J D, Gustafsson F P, Hashimoto T, Hayano R S, Hirenzaki S 2016 Prog. Theor. Exp. Phys. 2016 091D01Google Scholar

    [15]

    Yamada S, Tatsuno H, Okada S, Hashimoto T 2020 J. Low Temp. Phys. 200 418Google Scholar

    [16]

    Hashimoto T, Bennett D A, Doriese W B, Durkin M S, Fowler J W, Gard J D, Hayakawa R, Hayashi T, Hilton G C, Ichinohe Y 2020 J. Low Temp. Phys. 199 1018Google Scholar

    [17]

    Shen Y, Xiao J, Yao K, Yang Y, Lu D, Fu Y Q, Tu B S, Hutton R, Zou Y M 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 326Google Scholar

    [18]

    Betancourt-Martinez G L, Adams J, Bandler S, Beiersdorfer P, Brown G, Chervenak J, Doriese R, Eckart M, Irwin K, Kelley R 2014 Proc. SPIE 9144 91443UGoogle Scholar

    [19]

    Brown G V, Adams J S, Beiersdorfer P, Clementson J, Frankel M, Kahn S M, Kelly R L, Kilbourne C A, Koutroumpa D, Leutenegger M 2009 AIP Conf. Proc. 1185 446Google Scholar

    [20]

    Porter F S, Almy R, Apodaca E, Figueroa-Feliciano E, Galeazzi M, Kelley R, McCammon D, Stahle C K, Szymkowiak A E, Sanders W T 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 444 220Google Scholar

    [21]

    McCammon D, Barger K, Brandl D E, Brekosky R P, Crowder S G, Gygax J D, Kelley R L, Kilbourne C A, Lindeman M A, Porter F S 2008 J. Low Temp. Phys. 151 715Google Scholar

    [22]

    Adams J S, Baker R, Bandler S R, Bastidon N, Danowski M E, Doriese W B, Eckart M E, FigueroaFeliciano E, Goldfinger D C, Heine S N T 2020 J. Low Temp. Phys. 199 1062Google Scholar

    [23]

    ZuHone J A, Markevitch M, Zhuravleva I 2016 Astrophys. J. 817 110Google Scholar

    [24]

    The Hitomi Collaboration 2016 Nature 535 117Google Scholar

    [25]

    Kilbourne C A, Adams J S, Brekosky R P, Chervenak J A, Chiao M P, Eckart M E, Figueroa-Feliciano E, Galeazzi M, Grein C, Jhabvala C A 2018 J. Astron. Telesc. Instrum. Syst. 4 011214Google Scholar

    [26]

    Barcons X, Barret D, Decourchelle A, den Herder J W, Fabian A C, Matsumoto H, Lumb D, Nandra K, Piro L, Smith R K 2017 Astron. Nachr. 338 153Google Scholar

    [27]

    Barret D, Trong T L, Den Herder J-W, Piro L, Barcons X, Huovelin J, Kelley R, Mas-Hesse J M, Mitsuda K, Paltani S 2016 Proc. SPIE 9905 99052FGoogle Scholar

    [28]

    Cui W, Bregman J N, Bruijn M P, Chen L B, Chen Y, Cui C, Fang T T, Gao B, Gao H, Gao J R 2020 Proc. SPIE 11444 114442SGoogle Scholar

    [29]

    Wang Y R, Wang S F, Li F J, Liang Y J, Ding J, Chen Y L, Cui W, Huang R, Hua X Y, Jin H 2020 Proc. SPIE 11444 114449CGoogle Scholar

    [30]

    Carpenter M H, Croce M P, Baker Z K, Batista E R, Caffrey M P, Fontes C J, Koehler K E, Kossmann S E, McIntosh K G, Rabin M W 2020 J. Low Temp. Phys. 200 437Google Scholar

    [31]

    Ohno M, Irimatsugawa T, Miura Y, Takahashi H, Ikeda T, Otani C, Sakama M, Matsufuji N 2018 J. Low Temp. Phys. 193 1222Google Scholar

    [32]

    Smith R, Ohno M, Miura Y, Nakada N, Mitsuya Y, Takahashi H, Ikeda T, Otani C, Sakama M, Matsufuji N 2020 J. Low Temp. Phys. 199 1012Google Scholar

    [33]

    Yamaguchi A, Muramatsu H, Hayashi T, Yuasa N, Nakamura K, Takimoto M, Haba H, Konashi K, Watanabe M, Kikunaga H 2019 Phys. Rev. Lett. 123 222501Google Scholar

    [34]

    Rabin M W 2009 AIP Conf. Proc. 1185 725

    [35]

    Winkler R, Hoover A S, Rabin M W, Bennett D A, Doriese W B, Fowler J W, Hays-Wehle J, Horansky R D, Reintsema C D, Schmidt D R 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 770 203Google Scholar

    [36]

    丁洪林 2010 核辐射探测器 (哈尔滨: 哈尔滨工程大学出版社) 第376页

    Ding H L 2010 Nuclear Radiation Detector (Harbin: Harbin Engineering University Press) p376 (in Chinese)

    [37]

    沈扬 2011 博士学位论文 (上海: 复旦大学)

    Shen Y 2011 Ph. D. Dissertation (Shanghai: Fudan University) (in Chinese)

    [38]

    Frank M, Hiller L J, Le Grand J B, Mears C A, Labov S E, Lindeman M A, Netel H, Chow D, Barfknecht A T 1998 Rev. Sci. Instrum. 69 25Google Scholar

    [39]

    Moseley S H, Mather J C, McCammon D 1984 J. Appl. Phys. 56 1257Google Scholar

    [40]

    McCammon D 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp35−62

    [41]

    Irwin K D, Hilton G C 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp63−150

    [42]

    Fleischmann A, Enss C, Seidel G M 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp151−216

    [43]

    Li D, Alpert B K, Becker D T, Bennett D A, Carini G A, Cho H M, Doriese W B, Dusatko J E, Fowler J W, Frisch J C 2018 J. Low Temp. Phys. 193 1287Google Scholar

    [44]

    Unger D, Abeln A, Enss C, Fleischmann A, Hengstler D, Kempf S, Gastaldo L 2020 arXiv:2010.15348 [physics.ins-det]

    [45]

    Newbury D E, Irwin K D, Hilton G C, Wollman D A, Small J A, Martinis J M 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp267−312

    [46]

    Collins S A, Rodriguez J I, Ross Jr R G 2002 AIP Conf. Proc. 613 1053Google Scholar

    [47]

    Wikus P, Rutherford J M, Trowbridge S N, McCammon D, Adams J S, Bandler S R, Das R, Doriese W B, Eckart M E, Figueroa-Feliciano E 2008 International Cryocooler Conference-16th Atlanta, Georgia, USA, May 17−20, 2008 p547

    [48]

    Fujimoto R, Mitsuda K, Yamasaki N, Takei Y, Tsujimoto M, Sugita H, Sato Y, Shinozaki K, Ohashi T, Ishisaki Y 2010 Cryogenics 50 488Google Scholar

    [49]

    Prouve’ T, Duval J M, Charles I, Yamasaki N Y, Mitsuda K, Nakagawa T, Shinozaki K, Tokoku C, Yamamoto R, Minami Y 2018 Cryogenics 89 85Google Scholar

    [50]

    Wang J, Pan C, Zhang T, Luo K Q, Xi X T, Wu X L, Zheng J P, Chen L B, Wang J J, Zhou Y 2019 Sci. Bull. 64 219Google Scholar

    [51]

    McCammon D, Almy R, Apodaca E e a, Tiest W B, Cui W, Deiker S, Galeazzi M, Juda M, Lesser A, Mihara T 2002 Astrophys. J. 576 188Google Scholar

    [52]

    Maehata K, Hara T, Ito T, Yamanaka Y, Tanaka K, Mitsuda K, Yamasaki N Y 2014 Cryogenics 61 86Google Scholar

    [53]

    Silver E, Lin T, Vicenzi E, Toth M, Westphal A, Beeman J, Haller E E, Burchell M 2012 43rd Lunar and Planetary Science Conference Woodlands, Texas ,USA, March 19−23, 2012 p2511

    [54]

    Carpenter M H, Friedrich S, Hall J A, Harris J, Cantor R 2014 J. Low Temp. Phys. 176 222Google Scholar

    [55]

    Ukibe M, Fujii G, Shiki S, Kitajima Y, Ohkubo M 2016 J. Low Temp. Phys. 184 200Google Scholar

    [56]

    Fujii G, Ukibe M, Ohkubo M 2015 Supercond. Sci. Technol. 28 104005Google Scholar

    [57]

    Fujii G, Ukibe M, Shiki S, Ohkubo M 2017 X-Ray Spectrometry 46 325Google Scholar

    [58]

    Fujii G, Ukibe M, Shiki S, Ohkubo M 2019 Microsc. Microanal. 25 262Google Scholar

    [59]

    Kishimoto M, Ukibe M, Katagiri M, Nakazawa M, Kurakado M 1996 Nucl. Instrum. Methods Phys. Res., Sec. A 370 126

    [60]

    Shiki S, Zen N, Ukibe M, Ohkubo M 2009 AIP Conf. Proc. 1185 409

    [61]

    Ullom J N, Bennett D A 2015 Supercond. Sci. Technol. 28 084003Google Scholar

    [62]

    Alpert B, Balata M, Bennett D, Biasotti M, Boragno C, Brofferio C, Ceriale V, Corsini D, Day P K, De Gerone M 2015 Eur. Phys. J. C 75 1Google Scholar

    [63]

    Irwin K D 2020 J. Supercond. Novel Magn. 34 1601Google Scholar

    [64]

    Kempf S, Fleischmann A, Gastaldo L, Enss C 2018 J. Low Temp. Phys. 193 365Google Scholar

    [65]

    Friedrich S 2020 Magnetic Microcalorimeter (MMC) Gamma Detectors with Ultra-High Energy Resolution (Livermore: Lawrence Livermore National Laboratory) Report No. LLNL-TR-744808

    [66]

    Wegner M, Karcher N, Krömer O, Richter D, Ahrens F, Sander O, Kempf S, Weber M, Enss C 2018 J. Low Temp. Phys. 193 462Google Scholar

    [67]

    Cantor R 1996 SQUID Sensors: Fundamentals, Fabrication and Applications (Heidelberg: Springer) pp179−233

    [68]

    Eschweiler J D 2014 Ph. D. Dissertation (Hamburg: University of Hamburg)

    [69]

    Sakai K, Takei Y, Yamamoto R, Yamasaki N Y, Mitsuda K, Hidaka M, Nagasawa S, Kohjiro S, Miyazaki T 2014 J. Low Temp. Phys. 176 400Google Scholar

    [70]

    de la Broïse X, Le Coguie A, Sauvageot J L, Pigot C, Coppolani X, Moreau V, d Hollosy S, Knarosovski T, Engel A 2018 J. Low Temp. Phys. 193 578Google Scholar

    [71]

    Navick X F, Sauvageot J L, de La Broise X, Charvolin T, Thibon R, Lugiez F, Le Coguie A 2020 J. Low Temp. Phys. 200 187Google Scholar

    [72]

    Sauvageot J L, de la Broïse X, Charvolin T, Thibon R, Lugiez F, Le Coguie A, Zahir A 2018 Proc. SPIE 10699 106992IGoogle Scholar

    [73]

    Chiao M P, Adams J, Goodwin P, Hobson C W, Kelley R L, Kilbourne C A, McCammon D, McGuinness D S, Moseley S J, Porter F S 2016 Proc. SPIE 9905 99053MGoogle Scholar

    [74]

    Wulf D, Jaeckel F, McCammon D, Chervenak J A, Eckart M E 2020 J. Appl. Phys. 128 174503Google Scholar

    [75]

    Fowler J W, Alpert B K, Doriese W B, Fischer D A, Jaye C, Joe Y I, O’Neil G C, Swetz D S, Ullom J N 2015 Astrophys. J. Suppl. Ser. 219 35Google Scholar

    [76]

    Titus C J, Li D, Alpert B K, Cho H M, Fowler J W, Lee S J, Morgan K M, Swetz D S, Ullom J N, Wessels A 2020 J. Low Temp. Phys. 200 1038Google Scholar

    [77]

    Jaklevic J, Kirby J A, Klein M P, Robertson A S, Brown G S, Eisenberger P 1977 J. Microsc. 199 37Google Scholar

    [78]

    Vila F D, Jach T, Elam W T, Rehr J J, Denlinger J D 2011 J. Phys. Chem. A 115 3243Google Scholar

    [79]

    Lee S J, Titus C J, Alonso Mori R, Baker M L, Bennett D A, Cho H M, Doriese W B, Fowler J W, Gaffney K J, Gallo A 2019 Rev. Sci. Instrum. 90 113101Google Scholar

    [80]

    Li S, Lee S J, Wang X, Yang W, Huang H, Swetz D S, Doriese W B, O’Neil G C, Ullom J N, Titus C J 2019 J. Am. Chem. Soc. 141 12079Google Scholar

    [81]

    Titus C J, Baker M L, Lee S J, Cho H M, Doriese W B, Fowler J W, Gaffney K, Gard J D, Hilton G C, Kenney C 2017 J. Chem. Phys. 147 214201Google Scholar

    [82]

    Peng G, Degroot F M F, Hämäläinen K, Moore J A, Wang X, Grush M M, Hastings J B, Siddons D P, Armstrong W H 1994 J. Am. Chem. Soc. 116 2914Google Scholar

    [83]

    Bergmann U, Horne C R, Collins T J, Workman J M, Cramer S P 1999 Chem. Phys. Lett. 302 119Google Scholar

    [84]

    Kurien K C 1971 J. Chem. Soc. B 2081Google Scholar

    [85]

    Miles C J, Brezonik P L 1981 Environ. Sci. Technol. 15 1089Google Scholar

    [86]

    Abbamonte P, Rusydi A, Smadici S, Gu G D, Sawatzky G A, Feng D L 2005 Nat. Phys. 1 155Google Scholar

    [87]

    Abbamonte P, Venema L, Rusydi A, Sawatzky G A, Logvenov G, Bozovic I 2002 Science 297 581Google Scholar

    [88]

    da Silva Neto E H, Comin R, He F, Sutarto R, Jiang Y, Greene R L, Sawatzky G A, Damascelli A 2015 Science 347 282Google Scholar

    [89]

    Serban Smadici, Abbamonte P, Taguchi M, Kohsaka Y, Sasagawa T, Azuma M, Takano M, Takagi H 2007 Phys. Rev. B 75 075104Google Scholar

    [90]

    Fuchs O, Weinhardt L, Blum M, Weigand M, Umbach E, Bär M, Heske C, Denlinger J, Chuang Y D, McKinney W 2009 Rev. Sci. Instrum. 80 063103Google Scholar

    [91]

    Ghiringhelli G, Piazzalunga A, Dallera C, Trezzi G, Braicovich L, Schmitt T, Strocov V N, Betemps R, Patthey L, Wang X 2006 Rev. Sci. Instrum. 77 113108Google Scholar

    [92]

    Ghiringhelli G, Le Tacon M, Minola M, Blanco-Canosa S, Mazzoli C, Brookes N B, De Luca G M, Frano A, Hawthorn D G, He F 2012 Science 337 821Google Scholar

    [93]

    Joe Y I, Fang Y, Lee S, Sun S X L, de la Peňa G A, Doriese W B, Morgan K M, Fowler J W, Vale L R, Rodolakis F, McChesney J L, Ullom J N, Swetz D S, Abbamonte P 2020 Phys. Rev. Appl. 13 034026Google Scholar

    [94]

    Fullagar W, Uhlig J, Walczak M, Canton S, Sundström V 2008 Rev. Sci. Instrum. 79 103302Google Scholar

    [95]

    Yan D K 2019 Ph. D. Dissertation (Evanston, Illinois: Northwestern University)

    [96]

    Guruswamy T, Gades L, Miceli A, Patel U, Quaranta O 2021 IEEE Trans. Appl. Supercond. 31 2101605

    [97]

    Yamada S, Ichinohe Y, Tatsuno H, Hayakawa R, Suda H, Ohashi T, Ishisaki Y, Uruga T, Sekizawa O, Nitta K 2021 Prev. Sci. Instrum. 92 013103

    [98]

    Morgan K M, Becker D T, Bennett D A, Doriese W B, Gard J D, Irwin K D, Lee S J, Li D, Mates J A B, Pappas C G 2019 IEEE Trans. Appl. Supercond. 29 1Google Scholar

    [99]

    Miaja Avila L, O’Neil G C, Joe Y I, Morgan K M, Fowler J W, Doriese W B, Ganly B, Lu D, Ravel B, Swetz D S 2021 X Ray Spectrom. 50 9Google Scholar

    [100]

    George S J, Carpenter M H, Friedrich S, Cantor R 2020 J. Low Temp. Phys. 200 479Google Scholar

    [101]

    Palosaari M R J, Käyhkö M, Kinnunen K M, Laitinen M, Julin J, Malm J, Sajavaara T, Doriese W B, Fowler J, Reintsema C 2016 Phys. Rev. Appl. 6 024002Google Scholar

    [102]

    Käyhkö M, Laitinen M, Arstila K, Maasilta I J, Sajavaara T 2019 Nucl. Instrum. Methods Phys. Res., Sect. B 447 59Google Scholar

    [103]

    Szypryt P, O’Neil G C, Takacs E, Tan J N, Buechele S W, Naing A S, Bennett D A, Doriese W B, Durkin M, Fowler J W 2019 Rev. Sci. Instrum. 90 123107Google Scholar

    [104]

    Cui W, Chen L B, Gao B, Guo F L, Jin H, Wang G L, Wang L, Wang J J, Wang W, Wang Z S 2020 J. Low Temp. Phys. 199 502Google Scholar

    [105]

    Porter F S, Almy R, Apodaca E, Figueroa-Feliciano E, Galeazzi M, Kelley R, McCammon D, Stahle C K, Szymkowiak A E, Sanders W T 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 444 175Google Scholar

    [106]

    Erickcek A L, Steinhardt P J, McCammon D, McGuire P C 2007 Phys. Rev. D 76 042007Google Scholar

    [107]

    Takahashi T, Mitsuda K, Kelley R, Aarts H, Aharonian F, Akamatsu H, Akimoto F, Allen S, Anabuki N, Angelini L 2012 Proc. SPIE 8443 84431ZGoogle Scholar

    [108]

    Goldfinger D C, Adams J S, Baker R, Bandler S R, Danowski M E, Doriese W B, Eckart M E, Figueroa-Feliciano E, Hilton G C, Hubbard A J F 2016 Proc. SPIE 9905 99054SGoogle Scholar

    [109]

    Pajot F, Barret D, Lam-Trong T, Den Herder J W, Piro L, Cappi M, Huovelin J, Kelley R, Mas-Hesse J M, Mitsuda K 2018 J. Low Temp. Phys. 193 901Google Scholar

    [110]

    Bandler S R, Chervenak J A, Datesman A M, Devasia A M, DiPirro M J, Sakai K, Smith S J, Stevenson T R, Yoon W, Bennett D A 2019 J. Astron. Telesc. Instrum. Syst. 5 021017

    [111]

    Gaskin J A, Swartz D, Vikhlinin A A, Özel F, Gelmis K E E, Arenberg J W, Bandler S R, Bautz M W, Civitani M M, Dominguez A 2019 J. Astron. Telesc. Instrum. Syst. 5 021001Google Scholar

    [112]

    Redfern D, Nicolosi J, Höhne J, Weiland R, Simmnacher B, Hollerich C 2002 J. Res. Nat. Inst. Stand. Technol. 107 621Google Scholar

    [113]

    Wollman D A, Hilton G C, Irwin K D, Dulcie L L, Bergren N F, Newbury D E, Woo K S, Liu B Y H, Diebold A C, Martinis J M 1998 AIP Conf. Proc. 449 799Google Scholar

    [114]

    Szypryt P, Bennett D A, Boone W J, Dagel A L, Dalton G, Doriese W B, Durkin M, Fowler J W, Garboczi E J, Gard J D 2021 IEEE Trans. Appl. Supercond. 31 1Google Scholar

    [115]

    Uehara S, Takai Y, Shirose Y, Fujii Y 2012 J. Mineral. Petrol. Sci. 107 105Google Scholar

    [116]

    Hara T, Tanaka K, Maehata K, Mitsuda K, Yamasaki N Y, Ohsaki M, Watanabe K, Yu X, Ito T, Yamanaka Y 2010 J. Electron Microsc. 5 9Google Scholar

    [117]

    Maehata K, Hara T, Mitsuda K, Hidaka M, Tanaka K, Yamanaka Y 2016 J. Low Temp. Phys. 184 5Google Scholar

    [118]

    Yamada K, Kawakami N, Moronaga T, Hayashi K, Ichihara C, Hara T 2020 Appl. Phys. Express 13 082008Google Scholar

    [119]

    Bockhorn L, Paulsen M, Beyer J, Kossert K, Loidl M, Nähle O J, Ranitzsch P O, Rodrigues M 2020 J. Low Temp. Phys. 199 298Google Scholar

    [120]

    Kang C S, Jeon J A, Jo H S, Kim G B, Kim H L, Kim I, Kim S R, Kim Y H, Kwon D H, Lee C 2017 Supercond. Sci. Technol. 30 084011Google Scholar

    [121]

    Eliseev S, Blaum K, Block M, Chenmarev S, Dorrer H, Düllmann C E, Enss C, Filianin P E, Gastaldo L, Goncharov M 2015 Phys. Rev. Lett. 115 062501Google Scholar

  • [1] 王碧涵, 李冰, 刘旭强, 王毫, 蒋升, 林传龙, 杨文革. 毫秒时间分辨同步辐射X射线衍射和高压快速加载装置及应用. 物理学报, 2022, 71(10): 100702. doi: 10.7498/aps.71.20212360
    [2] 周庆勇, 魏子卿, 姜坤, 邓楼楼, 刘思伟, 姬剑锋, 任红飞, 王奕迪, 马高峰. 一种聚焦型X射线探测器在轨性能标定方法. 物理学报, 2018, 67(5): 050701. doi: 10.7498/aps.67.20172352
    [3] 张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋. 激光高能X射线成像中探测器表征与电子影响研究. 物理学报, 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [4] 代锦飞, 赵宝升, 盛立志, 周雁楠, 陈琛, 宋娟, 刘永安, 李林森. 标定脉冲星导航探测器的荧光X射线光源. 物理学报, 2015, 64(14): 149701. doi: 10.7498/aps.64.149701
    [5] 张治国. 垂直多结光伏型集成硅X射线探测器的实现和实验. 物理学报, 2014, 63(24): 248501. doi: 10.7498/aps.63.248501
    [6] 余波, 陈伯伦, 侯立飞, 苏明, 黄天晅, 刘慎业. 化学气相沉积金刚石探测器测量辐射驱动内爆的硬X射线. 物理学报, 2013, 62(5): 058102. doi: 10.7498/aps.62.058102
    [7] 胡慧君, 赵宝升, 盛立志, 赛小锋, 鄢秋荣, 陈宝梅, 王朋. 用于脉冲星导航的X射线光子计数探测器研究. 物理学报, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [8] 宋天明, 易荣清, 崔延莉, 于瑞珍, 杨家敏, 朱托, 侯立飞, 杜华冰. ICF实验软X射线能谱仪对辐射能流时间关联测量的时标系统. 物理学报, 2012, 61(7): 075208. doi: 10.7498/aps.61.075208
    [9] 苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟. 高能脉冲X射线能谱测量. 物理学报, 2010, 59(11): 7729-7735. doi: 10.7498/aps.59.7729
    [10] 侯立飞, 李芳, 袁永腾, 杨国洪, 刘慎业. 化学气相沉积金刚石探测器测量软X射线能谱. 物理学报, 2010, 59(2): 1137-1142. doi: 10.7498/aps.59.1137
    [11] 邹晓兵, 王新新, 张贵新, 韩 旻, 罗承沐. 喷气式Z箍缩等离子体辐射软X射线能谱的研究. 物理学报, 2006, 55(3): 1289-1294. doi: 10.7498/aps.55.1289
    [12] 易荣清, 杨国洪, 崔延莉, 杜华冰, 韦敏习, 董建军, 赵屹东, 崔明启, 郑 雷. 北京同步辐射3B3中能束线X射线探测系统性能研究. 物理学报, 2006, 55(12): 6287-6292. doi: 10.7498/aps.55.6287
    [13] 黄万霞, 袁清习, 田玉莲, 朱佩平, 姜晓明, 王寯越. 同步辐射硬x射线衍射增强成像新进展. 物理学报, 2005, 54(2): 677-681. doi: 10.7498/aps.54.677
    [14] 杨家敏, 丁耀南, 易荣清, 王耀梅, 张文海, 郑志坚. 软X射线能谱定量测量技术研究. 物理学报, 2001, 50(9): 1723-1728. doi: 10.7498/aps.50.1723
    [15] 成金秀, 缪文勇, 孙可熙, 王红斌, 杨家敏, 曹磊峰, 温天舒, 陈正林, 杨存榜, 江少恩, 崔延莉, 汤小青, 于艳宁, 陈久森. X射线辐射输运分解实验研究. 物理学报, 2000, 49(2): 282-287. doi: 10.7498/aps.49.282
    [16] 杨家敏, 丁耀南, 孙可煦, 成金秀, 江少恩, 郑志坚, 张文海. 用透射光栅谱仪测量金箔背侧X射线能谱. 物理学报, 2000, 49(4): 747-750. doi: 10.7498/aps.49.747
    [17] 孙可煦, 易荣清, 杨家敏, 王红斌, 马洪良, 陈正林, 黄天暄, 崔延莉, 郑志坚, 唐道源, 丁永坤, 温树槐, 江文勉, 赵永宽, 崔明启, 黎刚, 崔聪悟, 唐鄂生. 同步辐射软X射线源用于软X射线探测元件定标. 物理学报, 1997, 46(4): 650-655. doi: 10.7498/aps.46.650
    [18] 杨平, 赵际勇, 蒋建华. 同步辐射X射线衍射的谐波成分计算. 物理学报, 1993, 42(3): 437-445. doi: 10.7498/aps.42.437
    [19] 孙景文. X射线探测器的脉冲标定技术. 物理学报, 1986, 35(7): 864-873. doi: 10.7498/aps.35.864
    [20] 戚霞枝, 郑少白. CT-6B托卡马克装置中软X射线辐射及扰动. 物理学报, 1984, 33(4): 465-471. doi: 10.7498/aps.33.465
计量
  • 文章访问数:  10823
  • PDF下载量:  303
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-23
  • 修回日期:  2021-04-09
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回