搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅漂移探测器数字脉冲处理技术

宋文刚 张立军 张晶 王冠鹰

引用本文:
Citation:

硅漂移探测器数字脉冲处理技术

宋文刚, 张立军, 张晶, 王冠鹰

Research on digital pulse processing techniques for silicon drift detector

Song Wen-Gang, Zhang Li-Jun, Zhang Jing, Wang Guan-Ying
PDF
HTML
导出引用
  • 硅漂移探测器(silicon drift detector, SDD)是一种高性能X射线探测器, 具有极其广泛的应用. SDD射线探测系统由SDD器件、前置放大器和脉冲处理系统组成, 现有的SDD脉冲处理系统存在脉冲堆积抑制性能差以及易受前级系统参数波动影响的问题, 导致探测系统性能变差. 本文提出一种SDD数字脉冲处理系统, 在该系统中, 模数转换器(analog-to-digital converter, ADC)直接采样前置放大器的输出, 并将数据传输到数字脉冲处理平台进行处理. 结合SDD器件与前置放大器的信号特性, 分析ADC采样位数与采样频率对系统性能的影响; 提出两种优化的ADC采样电路, 防止因ADC采样位数不足引起能量分辨率变差. 对数字脉冲处理系统中的脉冲成形算法进行研究, 结果表明成形信号不会因前级系统的参数变化而畸变, 证明了该数字脉冲处理系统的鲁棒性. 建立完成SDD数字脉冲处理系统, 并对系统进行测试, 验证了系统的正确性.
    Silicon drift detector (SDD) is a kind of high performance X-ray detector, which is widely used. The ray detection system based on SDD is composed of SDD device, preamplifier and pulse processing system. The now available pulse processing system has the problems of poor pulse pile-up rejection performance and being vulnerable to the parameter fluctuations of front-end system, which degrades the performance of detection system. A digital pulse processing system is proposed. In this system, analog-to-digital converter (ADC) directly samples the output signal of preamplifier, and transmits the data to the digital pulse processing platform for processing. According to the signal characteristics of SDD device and preamplifier, the influence of ADC sampling bits and sampling frequency on system performance is analyzed. Two optimized ADC sampling circuits are proposed to reduce energy resolution degradation induced by insufficient ADC sampling bits. The pulse shaping algorithm in the digital pulse processing system is studied. The results show that the shaping signal will not be distorted due to the parameter fluctuations of the front-end system, which proves the robustness of the digital pulse processing system. The digital pulse processing system is implemented and tested, and the correctness of the system is verified.
      通信作者: 王冠鹰, wangguanying@ime.ac.cn
      Corresponding author: Wang Guan-Ying, wangguanying@ime.ac.cn
    [1]

    Gatti E, Rehak P 1984 Nucl. Instrum. Meth. 225 3

    [2]

    Zampa G, Rashevsky A, Vacchi A 2009 J. Instrum. 56 3

    [3]

    Bombelli L, Fiorini C, Frizzi T, Alberti R, Longoni A 2011 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, October 23−29, 2011 p1972

    [4]

    Bertuccio G, Ahangarianabhari M, Graziani C, Macera D, Shi Y, Rachevski A, Rashevskaya I, Vacchi A, Zampa G, Zampa N, Bellutti P, Giacomini G, Picciotto A, Piemonte C 2015 J. Instrum. 10 1

    [5]

    Hafizh I, Carminati M, Fiorini C 2020 IEEE Trans. Nucl. Sci. 67 7Google Scholar

    [6]

    Ishiwatari T, Siddharta Collaboration 2007 Nucl. Instrum. Meth. A 581 1Google Scholar

    [7]

    De Geronimo G, Rehak P, Ackley K, Carini G, Chen W, Fried J, Keister J, Li S, Li Z, Pinelli Donald A, Siddons D P, Vernon E, Gaskin Jessica A, Ramsey Brian D, Tyson Trevor A 2010 IEEE Trans. Nucl. Sci. 57 3Google Scholar

    [8]

    Prigozhin G, Gendreau K, Foster R, Ricker Jr G, Villasenor J, Doty J, Kenyon S, Arzoumanian Z, Redus R, Huber A 2012 High Energy, Optical, and Infrared Detectors for Astronomy V. International Society for Optics and Photonics 845318

    [9]

    Xu N, Sheng L, Su T, Chen C, Li Y, Zhao B, Liu C 2019 Nucl. Instrum. Meth. A 927 429Google Scholar

    [10]

    Barkan S, Saveliev V D, Wang Y, Feng L, Damron E V, Tomimatsu Y 2015 Bio. Chem. Res. 2015 338

    [11]

    谢树欣 2009 博士学位论文 (合肥: 中国科学技术大学)

    Xie S X 2009 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [12]

    张开琪 2018 硕士学位论文 (成都: 成都理工大学)

    Zhang K Q 2018 Ph. D. Dissertation (Chengdu: Chengdu University of Technology) (in Chinese)

    [13]

    Jordanov V T 2016 Nucl. Instrum. Meth. A 805 63Google Scholar

    [14]

    Chen E F, Feng C Q, Liu S B, Ye C F, Jin D D, Lian J, Hu H J 2017 Nucl. Sci. Tech. 28 1Google Scholar

    [15]

    Grzywacz R 2003 Nucl. Instrum. Meth. B 204 649Google Scholar

    [16]

    Wengang S, Lijun Z, Guanying W 2020 IEEE Transactions on Nuclear Science 67 7

    [17]

    张怀强 2011 博士学位论文 (成都: 成都理工大学)

    Zhang H Q 2011 Ph. D. Dissertation (Chengdu: Chengdu University of Technology) (in Chinese)

    [18]

    Schlosser D M, Lechner P, Lutz G, Niculae A, Soltau H, Strüder L, Eckhardt R, Hermenau K, Schaller G, Schopper F, Jaritschin O, Liebel A, Simsek A, Fiorini C, Longoni A 2010 Nucl. Instrum. Meth. A 624 2

    [19]

    Chen W, Kraner H, Li Z, Rehak P, Gatti E, Longoni A, Sampietro M, Holl P, Kemmer J, Faschingbauer U, Schmitt B, Worner A, Wurm J P 1992 IEEE Trans. Nucl. Sci. 39 4Google Scholar

    [20]

    Fiorini C, Gola A, Klatka T, Bombelli L, Frizzi T, Peloso R, Longoni A, Niculae A 2007 2007 IEEE Nuclear Science Symposium Conference Record Honolulu, Hawaii , USA, October 26−November 6, 2007 p2519

    [21]

    Unbehauen R, Cichocki A 2012 MOS Switched-Capacitor and Continuous-Time Integrated Circuits and Systems: Analysis and Design (Springer) pp1−82

    [22]

    Menaa N, D’Agostino P, Zakrzewski B, Jordanov V T 2011 Nucl. Instrum. Meth. A 652 1Google Scholar

    [23]

    Mazziotta M N 2008 Nucl. Instrum. Meth. A 584 2

    [24]

    邓智, 刘以农, 程建平, 康克军 2006 核电子学与探测技术 26 6

    Deng Z, Liu Y N, Cheng K P, Kang K J 2006 Nucl. Electron. Detect. Technol. 26 6

    [25]

    Lakatos T 1991 Nucl. Instrum. Meth. B 62 2

    [26]

    Warburton W K, Momayezi M, Hubbard-Nelson B, Skulski W 2000 Appl. Radiat. Isot. 53 4

    [27]

    Imperiale C, Imperiale A 2001 Measurement 30 1Google Scholar

    [28]

    Huaiqiang Z, Liangquan G E, Bin T 2013 Nucl. Sci. Tech. 24 6

    [29]

    杨海波 2015 博士学位论文 (兰州: 中国科学院近代物理研究所)

    Yang H B 2015 Ph. D. Dissertation (Lanzhou: Institute of modern physics of Chinese Academy of Sciences) (in Chinese)

  • 图 1  SDD数字脉冲处理系统

    Fig. 1.  Digital pulse processing system for SDD

    图 2  数字脉冲处理单元内部组成

    Fig. 2.  Internal components of digital pulse processing unit

    图 3  前置放大器输出信号

    Fig. 3.  Preamplifier output signal

    图 4  FWHM和采样位数的关系

    Fig. 4.  Relationship between FWHM and sample bits.

    图 5  FWHM和采样频率间的关系

    Fig. 5.  Relationship between FWHM and sample rate

    图 6  DAC反馈参考电平

    Fig. 6.  DAC feedback reference

    图 7  前置放大器输出信号放大后采样

    Fig. 7.  Sampling after the preamplifier output signal is amplified

    图 8  不同上升斜率下的梯形成形结果

    Fig. 8.  Trapezoidal shaping results with different ascending slope

    图 9  基线与峰值随上升斜率的变化

    Fig. 9.  The change of baseline and peak value with ascending slope

    图 10  用信号发生器测试数字脉冲处理系统

    Fig. 10.  Test digital pulse processing system with a signal generator

    图 11  固定阶跃信号幅度下的单谱峰

    Fig. 11.  Single spectra peak with fixed step signal amplitude

    图 12  数字脉冲处理系统非线性度

    Fig. 12.  Non-linearity of digital pulse processing system

    图 13  55Fe能谱测试结果

    Fig. 13.  Spectra test results of 55Fe

    表 1  前置放大器反馈电容与转换增益

    Table 1.  The feedback capacitors and conversion gains of preamplifiers

    序号 反馈电容/fF 转换增益/(mV·keV-1)
    1 ≈ 125 ≈ 0.35
    2 ≈ 50 ≈ 0.88
    3 ≈ 25 ≈ 1.76
    下载: 导出CSV

    表 2  串联和并联噪声参数设置

    Table 2.  Serial and parallel noise parameter settings

    参数 $\sigma_{{\rm{s}}}/A_{{\rm{mp}}}$ $ \sigma_{ {\rm{p} }}/\sigma_{ {\rm{s} }} $ 备注
    条件1 2.65% 2% 串联与并联白噪声强度相近
    条件2 2.65% 0.5% 串联白噪声占主导作用
    条件3 0.53% 2% 串联与并联白噪声强度较小
    下载: 导出CSV

    表 3  能量分辨率影响因素与成形时间的关联

    Table 3.  Relations between energy resolution impact factors and shaping time

    影响因素 与成形时间的关联性
    法诺效应 不相关
    电荷收集效率 不相关
    串联白噪声 随成形时间增大而减小
    闪烁噪声 不相关
    并联白噪声 随成形时间增大而增大
    下载: 导出CSV
  • [1]

    Gatti E, Rehak P 1984 Nucl. Instrum. Meth. 225 3

    [2]

    Zampa G, Rashevsky A, Vacchi A 2009 J. Instrum. 56 3

    [3]

    Bombelli L, Fiorini C, Frizzi T, Alberti R, Longoni A 2011 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, October 23−29, 2011 p1972

    [4]

    Bertuccio G, Ahangarianabhari M, Graziani C, Macera D, Shi Y, Rachevski A, Rashevskaya I, Vacchi A, Zampa G, Zampa N, Bellutti P, Giacomini G, Picciotto A, Piemonte C 2015 J. Instrum. 10 1

    [5]

    Hafizh I, Carminati M, Fiorini C 2020 IEEE Trans. Nucl. Sci. 67 7Google Scholar

    [6]

    Ishiwatari T, Siddharta Collaboration 2007 Nucl. Instrum. Meth. A 581 1Google Scholar

    [7]

    De Geronimo G, Rehak P, Ackley K, Carini G, Chen W, Fried J, Keister J, Li S, Li Z, Pinelli Donald A, Siddons D P, Vernon E, Gaskin Jessica A, Ramsey Brian D, Tyson Trevor A 2010 IEEE Trans. Nucl. Sci. 57 3Google Scholar

    [8]

    Prigozhin G, Gendreau K, Foster R, Ricker Jr G, Villasenor J, Doty J, Kenyon S, Arzoumanian Z, Redus R, Huber A 2012 High Energy, Optical, and Infrared Detectors for Astronomy V. International Society for Optics and Photonics 845318

    [9]

    Xu N, Sheng L, Su T, Chen C, Li Y, Zhao B, Liu C 2019 Nucl. Instrum. Meth. A 927 429Google Scholar

    [10]

    Barkan S, Saveliev V D, Wang Y, Feng L, Damron E V, Tomimatsu Y 2015 Bio. Chem. Res. 2015 338

    [11]

    谢树欣 2009 博士学位论文 (合肥: 中国科学技术大学)

    Xie S X 2009 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [12]

    张开琪 2018 硕士学位论文 (成都: 成都理工大学)

    Zhang K Q 2018 Ph. D. Dissertation (Chengdu: Chengdu University of Technology) (in Chinese)

    [13]

    Jordanov V T 2016 Nucl. Instrum. Meth. A 805 63Google Scholar

    [14]

    Chen E F, Feng C Q, Liu S B, Ye C F, Jin D D, Lian J, Hu H J 2017 Nucl. Sci. Tech. 28 1Google Scholar

    [15]

    Grzywacz R 2003 Nucl. Instrum. Meth. B 204 649Google Scholar

    [16]

    Wengang S, Lijun Z, Guanying W 2020 IEEE Transactions on Nuclear Science 67 7

    [17]

    张怀强 2011 博士学位论文 (成都: 成都理工大学)

    Zhang H Q 2011 Ph. D. Dissertation (Chengdu: Chengdu University of Technology) (in Chinese)

    [18]

    Schlosser D M, Lechner P, Lutz G, Niculae A, Soltau H, Strüder L, Eckhardt R, Hermenau K, Schaller G, Schopper F, Jaritschin O, Liebel A, Simsek A, Fiorini C, Longoni A 2010 Nucl. Instrum. Meth. A 624 2

    [19]

    Chen W, Kraner H, Li Z, Rehak P, Gatti E, Longoni A, Sampietro M, Holl P, Kemmer J, Faschingbauer U, Schmitt B, Worner A, Wurm J P 1992 IEEE Trans. Nucl. Sci. 39 4Google Scholar

    [20]

    Fiorini C, Gola A, Klatka T, Bombelli L, Frizzi T, Peloso R, Longoni A, Niculae A 2007 2007 IEEE Nuclear Science Symposium Conference Record Honolulu, Hawaii , USA, October 26−November 6, 2007 p2519

    [21]

    Unbehauen R, Cichocki A 2012 MOS Switched-Capacitor and Continuous-Time Integrated Circuits and Systems: Analysis and Design (Springer) pp1−82

    [22]

    Menaa N, D’Agostino P, Zakrzewski B, Jordanov V T 2011 Nucl. Instrum. Meth. A 652 1Google Scholar

    [23]

    Mazziotta M N 2008 Nucl. Instrum. Meth. A 584 2

    [24]

    邓智, 刘以农, 程建平, 康克军 2006 核电子学与探测技术 26 6

    Deng Z, Liu Y N, Cheng K P, Kang K J 2006 Nucl. Electron. Detect. Technol. 26 6

    [25]

    Lakatos T 1991 Nucl. Instrum. Meth. B 62 2

    [26]

    Warburton W K, Momayezi M, Hubbard-Nelson B, Skulski W 2000 Appl. Radiat. Isot. 53 4

    [27]

    Imperiale C, Imperiale A 2001 Measurement 30 1Google Scholar

    [28]

    Huaiqiang Z, Liangquan G E, Bin T 2013 Nucl. Sci. Tech. 24 6

    [29]

    杨海波 2015 博士学位论文 (兰州: 中国科学院近代物理研究所)

    Yang H B 2015 Ph. D. Dissertation (Lanzhou: Institute of modern physics of Chinese Academy of Sciences) (in Chinese)

  • [1] 夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭. 基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器. 物理学报, 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [2] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器. 物理学报, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [3] 钟海, 叶炜, 吴晓东, 郭迎. 基于光前置放大器的量子密钥分发融合经典通信方案. 物理学报, 2021, 70(2): 020301. doi: 10.7498/aps.70.20200855
    [4] 宋文刚, 张立军, 张晶, 王冠鹰. 硅漂移探测器数字脉冲处理技术研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211062
    [5] 白光富, 江阳, 胡林, 田晶, 訾月姣. 基于低采样率模数转换器的延时复用频分多址无源光网络. 物理学报, 2017, 66(19): 194204. doi: 10.7498/aps.66.194204
    [6] 徐能, 盛立志, 张大鹏, 陈琛, 赵宝升, 郑伟, 刘纯亮. X射线脉冲星导航动态模拟实验系统研制与性能测试. 物理学报, 2017, 66(5): 059701. doi: 10.7498/aps.66.059701
    [7] 刘建强, 王旭阳, 白增亮, 李永民. 时域脉冲平衡零拍探测器的高精度自动平衡. 物理学报, 2016, 65(10): 100303. doi: 10.7498/aps.65.100303
    [8] 代锦飞, 赵宝升, 盛立志, 周雁楠, 陈琛, 宋娟, 刘永安, 李林森. 标定脉冲星导航探测器的荧光X射线光源. 物理学报, 2015, 64(14): 149701. doi: 10.7498/aps.64.149701
    [9] 胡慧君, 赵宝升, 盛立志, 赛小锋, 鄢秋荣, 陈宝梅, 王朋. 用于脉冲星导航的X射线光子计数探测器研究. 物理学报, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [10] 王光强, 王建国, 童长江, 李小泽, 王雪锋. 高功率太赫兹脉冲半导体探测器的分析与设计. 物理学报, 2011, 60(3): 030702. doi: 10.7498/aps.60.030702
    [11] 欧阳晓平, 李真富, 霍裕昆, 宋献才. 用于脉冲γ强度测量的φ60,1000μm PIN探测器. 物理学报, 2007, 56(3): 1353-1357. doi: 10.7498/aps.56.1353
    [12] 莫嘉琪, 张伟江, 何 铭. 激光脉冲放大器传输波的计算. 物理学报, 2006, 55(7): 3233-3236. doi: 10.7498/aps.55.3233
    [13] 李培丽, 黄德修, 张新亮, 朱光喜. 基于多电极单端耦合半导体光放大器的交叉增益调制型波长转换器. 物理学报, 2006, 55(6): 2746-2750. doi: 10.7498/aps.55.2746
    [14] 刘仁红, 蔡希洁, 杨 琳, 张志祥, 毕纪军. 激光脉冲放大器的增益通量曲线研究. 物理学报, 2005, 54(7): 3140-3143. doi: 10.7498/aps.54.3140
    [15] 杨洪琼, 朱学彬, 杨高照, 李林波, 宋献才. 用于n,γ混合场的新型脉冲中子探测器研究. 物理学报, 2004, 53(10): 3321-3325. doi: 10.7498/aps.53.3321
    [16] 吴建伟, 夏光琼, 吴正茂. 基于半导体光放大器和非线性光纤环镜的光脉冲压缩器的设计模型和理论分析. 物理学报, 2004, 53(4): 1105-1109. doi: 10.7498/aps.53.1105
    [17] 孙大睿, 宋晏蓉, 张志刚, 刘永军, 柴 路, 王清月. 用于飞秒脉冲放大器的马丁内兹展宽器与欧浮纳展宽器性能比较. 物理学报, 2003, 52(4): 870-874. doi: 10.7498/aps.52.870
    [18] 宋晏蓉, 张志刚, 王清月. 使用马丁内兹展宽器的啁啾脉冲放大器特性研究. 物理学报, 2003, 52(3): 581-586. doi: 10.7498/aps.52.581
    [19] 张新亮, 孙军强, 刘德明, 黄德修, 易河清. 基于半导体光放大器的交叉增益型波长转换器转换特性的研究. 物理学报, 2000, 49(4): 741-746. doi: 10.7498/aps.49.741
    [20] 孙景文. X射线探测器的脉冲标定技术. 物理学报, 1986, 35(7): 864-873. doi: 10.7498/aps.35.864
计量
  • 文章访问数:  6342
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-03
  • 修回日期:  2021-08-27
  • 上网日期:  2021-12-20
  • 刊出日期:  2022-01-05

/

返回文章
返回