搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相位梯度超构光栅的光学超构笼子

高越 余博丞 郭瑞 曹燕燕 徐亚东

引用本文:
Citation:

基于相位梯度超构光栅的光学超构笼子

高越, 余博丞, 郭瑞, 曹燕燕, 徐亚东

Optical meta-cage based on phase gradient metagrating

Gao Yue, Yu Bo-Cheng, Guo Rui, Cao Yan-Yan, Xu Ya-Dong
PDF
HTML
导出引用
  • 相位梯度超构光栅为自由操控光或者电磁波传播, 以及设计新型功能光子器件提供新的思路. 基于突变相位概念和梯度超构光栅中的异常衍射规律, 本文设计和研究了一种亚波长金属超构笼子. 通过数值模拟和严格的解析计算发现超构笼子囚禁光的能力与周期内单元个数$m$的奇偶性有关. 当单元个数为奇数时, 放在超构笼子中的点源几乎可以无阻碍地辐射至笼子外面; 而当单元个数为偶数时, 放在超构笼子中的点源几乎无法辐射到笼子外面, 即所有能量都被局域在笼子中. 本研究可以为新型雷达天线罩和光子隔离器件提供新的思路和理论指导.
    How to effectively control the refraction, reflection, propagation and wavefront of electromagnetic wave or light is always one of the advanced researches in the field of optics. In recent years, much effort has been devoted to both theoretical and experimental studies of optical phase gradient metagratings (PGMs) due to the fundamental interest and practical importance of PGMs, such as the generalized Snell’s law (GSL). Typically, the PGMs are constructed as periodic gratings consisting of a supercell spatially repeated along an interface, and each supercell consists of m unit cells, with m being an integer. The key idea of PGMs is to introduce an abrupt phase shift covering the range from 0 to $2\pi $ discretely through m unit cells to ensure the complete control of the outgoing waves. The phase gradient provides a new degree of freedom for the manipulation of light propagation, which has allowed a series of ultrathin devices to realize anomalous scattering, the photon spin Hall effect, and many other phenomena.Intuitively, the number of unit cells m in a supercell does not influence the PGM diffraction characteristics, except that a small value of m will lead to a reduced diffraction efficiency. However, some recent studies have shown that the integer m plays a fundamental role in determining the high-order PGM diffractions when the incident angle is beyond the critical angle predicted by the GSL. In particular, for high-order PGM diffractions, m leads to a new set of diffraction equations expressed as                 $ \left\{ {\begin{aligned} &{{k_x} = k_x^t - nG,{\text{ for odd L,}}} \\ &{{k_x} = k_x^r - nG,{\text{ for even L}}{\text{. }}} \end{aligned}} \right. $In addition to the phase gradient, the integer number of unit cells m in a supercell is another degree of freedom that can be employed to control the light propagation. By the parity of m, the higher-order outgoing wave can be reversed between the anomalous transmission channel and the anomalous reflection channel.In this work, according to the concept of abrupt phase and the parity-dependent diffraction law in phase gradient metagrating, we theoretically design and study an optical meta-cage. The meta-cage is a periodic structure with one period that contains m different unit cells. Through numerical simulations and rigorous analytical calculations, we find that the ability of meta-cage to trap light is related to the parity of the number of unit cells m in a supercell. Specifically, when the number of unit cells is odd, the point source placed in the meta-cage can perfectly radiate out of the meta-cage without any reflection. On the contrary, when the number of unit cells is even, the point source can hardly radiate out of the meta-cage, and all the energy is localized within the meta-cage. Moreover, such a phenomenon is robust against the disorder. These results can provide new ideas and theoretical guidance for designing new radar radome and photonic isolation devices.
      通信作者: 曹燕燕, yycao@suda.edu.cn ; 徐亚东, ydxu@stu.suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974010, 12274313, 12104331)、中国博士后科学基金(批准号: 2020M681701, 2022T150459)、江苏省高校自然科学基金(批准号: 20KJB140014)和江苏省博士后科学基金(批准号: 2021K276B)资助的课题.
      Corresponding author: Cao Yan-Yan, yycao@suda.edu.cn ; Xu Ya-Dong, ydxu@stu.suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974010, 12274313, 12104331), the China Postdoctoral Science Foundation (Grant Nos. 2020M681701, 2022T150459), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 20KJB140014), and the Postdoctoral Science Foundation of Jiangsu Province, China (Grant No. 2021K276B).
    [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar

    [3]

    Yu N, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [4]

    Zhao Y, Liu X, Alù A 2014 J. Opt. 16 123001Google Scholar

    [5]

    Xu Y, Fu Y, Chen H 2016 Nat. Rev. Mater. 1 16067Google Scholar

    [6]

    Shi H Y, Zhang A X, Chen J Z, Wang J F, Xia S, Xu Z 2016 Chin. Phys. B 25 078105Google Scholar

    [7]

    Zhao J, Yang X, Dai J Y, et al. 2018 Natl. Sci. Rev. 6 231

    [8]

    Pendry J B 2003 Opt. Express 11 755Google Scholar

    [9]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [10]

    Smolyaninov I I, Hung Y J, Davis C C 2007 Science 315 1699Google Scholar

    [11]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686Google Scholar

    [12]

    Rho J, Zi L Y, Yi X, Xiao B Y, Zhao W L, Hyeunseok C, Guy B, Xiang Z 2010 Nat. Commun. 1 143Google Scholar

    [13]

    Lu D, Liu Z 2012 Nat. Commun. 3 1205Google Scholar

    [14]

    Enoch S, Tayeb G, Sabouroux P, Guerin N, Vincent P 2002 Phys. Rev. Lett. 89 213902Google Scholar

    [15]

    Yuan Y, Lin F S, Li X R, Tao J, Jiang T, Huang F, Jin A K 2008 Phys. Rev. A 77 053821Google Scholar

    [16]

    Cheng Q, Jiang W X, Cui T J 2011 Appl. Phys. Lett. 99 131913Google Scholar

    [17]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403Google Scholar

    [18]

    Chen H, Jiang F Z, John F O'Hara, Frank C, Abul K A, Antoinette J T 2010 Phys. Rev. Lett. 105 073901Google Scholar

    [19]

    Shen X, Tie J C, Jun M Z, Hui F M, Wei X J, Hui L 2011 Opt. Express 19 9401Google Scholar

    [20]

    Ye D, Wang, Wang Z Y, Xu K W, Li H, J, Huangfu J T, Wang Z, Ran L X 2013 Phys. Rev. Lett. 111 187402Google Scholar

    [21]

    Ma H, Cui T J 2010 Nat. Commun. 1 124Google Scholar

    [22]

    Zhu B, Feng Y, Zhao J 2010 Appl. Phys. Lett. 97 051906Google Scholar

    [23]

    Xu Y, Gu C, Hou B, Lai Y, Li J, Chen H 2013 Nat. Commun. 4 2561Google Scholar

    [24]

    Ni X, Ishii S, Kildishev A V, Shalaev V M 2013 Light Sci. Appl. 2 e72Google Scholar

    [25]

    Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405Google Scholar

    [26]

    Xu Y, Fu Y, Chen H 2015 Sci. Rep. 5 12219Google Scholar

    [27]

    Ra’di Y, Sounas D L, Alù A 2017 Phys. Rev. Lett. 119 067404Google Scholar

    [28]

    Chalabi H, Ra’di Y, Sounas D L, Alù A 2017 Phys. Rev. B 96 075432Google Scholar

    [29]

    Fu Y, Cao Y, Xu Y 2019 Appl. Phys. Lett. 114 053502Google Scholar

    [30]

    Qian E T, Fu Y, Xu Y, Chen H 2016 Europhys. Lett. 114 34003Google Scholar

    [31]

    Du J, Lin Z, Chui S T, Dong G, Zhang W 2013 Phys. Rev. Lett. 110 163902Google Scholar

    [32]

    Fu Y, Shen C, Cao Y, et al. 2019 Nat. Commun. 10 2326Google Scholar

  • 图 1  单元个数m = 6 (a)和m = 7 (b)的光学超构笼子的结构示意图

    Fig. 1.  Schematics of the optical meta-cage with the number of unit cells m = 6 (a) and m = 7 (b), respectively.

    图 2  单元个数为m = 6 (a)和m = 7 (b)时超构笼子的磁场模分布情况; (c), (d)分别对应图(a), (b)中白色虚线处的磁场模具体数值大小

    Fig. 2.  Magnetic field distribution of the meta-cage for the number of unit cells m = 6 (a) and m = 7 (b), respectively; (c) and (d) correspond to the specific magnitude of the magnetic field along the white dashed line from the center to 4R in Fig. 2(a) and (b), respectively.

    图 3  (a) 单元个数m不同时, 数值仿真和解析计算得到的超构笼子的透射效率, 红色圆圈是数值模拟结果, 蓝色五角星是解析计算结果; (b)以m = 6和m = 7为例, 超构笼子的透射效率与入射波长的关系

    Fig. 3.  (a) The numerical and analytical results for the transmission efficiency of the meta-cage vs. the number of unit cells m. The red circles represent the numerical results and the blue pentagrams represent the analytical results. (b) The transmission efficiency of the meta-cage vs. the incident wavelength for the case of m = 6 and m = 7.

    图 4  (a)点源逐渐偏离正中心时超构笼子的透射效率; (b)点源偏离正中心时的磁场模空间分布情况, 上行图对应m = 6, 下行图对应 m = 7

    Fig. 4.  (a) The transmission efficiency of the meta-cage as the source gradually deviates from the center; (b) the distribution of the magnetic field as the source deviates from the center. The upper row corresponds to the case of m = 6 and the lower row corresponds to the case of m = 7.

  • [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar

    [3]

    Yu N, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [4]

    Zhao Y, Liu X, Alù A 2014 J. Opt. 16 123001Google Scholar

    [5]

    Xu Y, Fu Y, Chen H 2016 Nat. Rev. Mater. 1 16067Google Scholar

    [6]

    Shi H Y, Zhang A X, Chen J Z, Wang J F, Xia S, Xu Z 2016 Chin. Phys. B 25 078105Google Scholar

    [7]

    Zhao J, Yang X, Dai J Y, et al. 2018 Natl. Sci. Rev. 6 231

    [8]

    Pendry J B 2003 Opt. Express 11 755Google Scholar

    [9]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [10]

    Smolyaninov I I, Hung Y J, Davis C C 2007 Science 315 1699Google Scholar

    [11]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686Google Scholar

    [12]

    Rho J, Zi L Y, Yi X, Xiao B Y, Zhao W L, Hyeunseok C, Guy B, Xiang Z 2010 Nat. Commun. 1 143Google Scholar

    [13]

    Lu D, Liu Z 2012 Nat. Commun. 3 1205Google Scholar

    [14]

    Enoch S, Tayeb G, Sabouroux P, Guerin N, Vincent P 2002 Phys. Rev. Lett. 89 213902Google Scholar

    [15]

    Yuan Y, Lin F S, Li X R, Tao J, Jiang T, Huang F, Jin A K 2008 Phys. Rev. A 77 053821Google Scholar

    [16]

    Cheng Q, Jiang W X, Cui T J 2011 Appl. Phys. Lett. 99 131913Google Scholar

    [17]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403Google Scholar

    [18]

    Chen H, Jiang F Z, John F O'Hara, Frank C, Abul K A, Antoinette J T 2010 Phys. Rev. Lett. 105 073901Google Scholar

    [19]

    Shen X, Tie J C, Jun M Z, Hui F M, Wei X J, Hui L 2011 Opt. Express 19 9401Google Scholar

    [20]

    Ye D, Wang, Wang Z Y, Xu K W, Li H, J, Huangfu J T, Wang Z, Ran L X 2013 Phys. Rev. Lett. 111 187402Google Scholar

    [21]

    Ma H, Cui T J 2010 Nat. Commun. 1 124Google Scholar

    [22]

    Zhu B, Feng Y, Zhao J 2010 Appl. Phys. Lett. 97 051906Google Scholar

    [23]

    Xu Y, Gu C, Hou B, Lai Y, Li J, Chen H 2013 Nat. Commun. 4 2561Google Scholar

    [24]

    Ni X, Ishii S, Kildishev A V, Shalaev V M 2013 Light Sci. Appl. 2 e72Google Scholar

    [25]

    Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405Google Scholar

    [26]

    Xu Y, Fu Y, Chen H 2015 Sci. Rep. 5 12219Google Scholar

    [27]

    Ra’di Y, Sounas D L, Alù A 2017 Phys. Rev. Lett. 119 067404Google Scholar

    [28]

    Chalabi H, Ra’di Y, Sounas D L, Alù A 2017 Phys. Rev. B 96 075432Google Scholar

    [29]

    Fu Y, Cao Y, Xu Y 2019 Appl. Phys. Lett. 114 053502Google Scholar

    [30]

    Qian E T, Fu Y, Xu Y, Chen H 2016 Europhys. Lett. 114 34003Google Scholar

    [31]

    Du J, Lin Z, Chui S T, Dong G, Zhang W 2013 Phys. Rev. Lett. 110 163902Google Scholar

    [32]

    Fu Y, Shen C, Cao Y, et al. 2019 Nat. Commun. 10 2326Google Scholar

  • [1] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [2] 宋睿睿, 邓钦玲, 周绍林. 基于相变与悬链线连续相位调控的超构光子开关. 物理学报, 2022, 71(2): 029101. doi: 10.7498/aps.71.20211538
    [3] 王明照, 王少杰, 许河秀. 基于剪纸方法的一种可重构线极化转换空间序构超表面. 物理学报, 2021, 70(15): 154101. doi: 10.7498/aps.70.20210188
    [4] 王浩然, 蓝君, 陈佳惠, 李义丰. 基于多腔型超构材料的声场增强效应. 物理学报, 2021, 70(15): 154301. doi: 10.7498/aps.70.20202172
    [5] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明. 基于复合超构表面的宽带圆极化双功能器件设计. 物理学报, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [6] 张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军. 编码超构表面实现双波束独立可重构. 物理学报, 2021, 70(17): 178102. doi: 10.7498/aps.70.20210344
    [7] 郭志巍, 郭寒贝, 王婷. 侧向局域共振超构板声振特性. 物理学报, 2021, 70(21): 214301. doi: 10.7498/aps.70.20210595
    [8] 盛冲, 刘辉, 祝世宁. 光学超构材料芯片上类比引力的研究进展. 物理学报, 2020, 69(15): 157802. doi: 10.7498/aps.69.20200183
    [9] 吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强. 含双曲超构材料的复合周期结构的带隙调控及应用. 物理学报, 2020, 69(15): 154205. doi: 10.7498/aps.69.20200084
    [10] 光学超构材料专题编者按. 物理学报, 2020, 69(15): 150101. doi: 10.7498/aps.69.150101
    [11] 王美欧, 肖倩, 金霞, 曹燕燕, 徐亚东. 基于亚波长金属超构光栅的中红外大角度高效率回射器. 物理学报, 2020, 69(1): 014211. doi: 10.7498/aps.69.20191144
    [12] 林月钗, 刘仿, 黄翊东. 基于超构材料的Cherenkov辐射. 物理学报, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [13] 田源, 葛浩, 卢明辉, 陈延峰. 声学超构材料及其物理效应的研究进展. 物理学报, 2019, 68(19): 194301. doi: 10.7498/aps.68.20190850
    [14] 杨鹏, 秦晋, 徐进, 韩天成. 超薄柔性透射型超构材料吸收器. 物理学报, 2019, 68(8): 087802. doi: 10.7498/aps.68.20182225
    [15] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [16] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应. 物理学报, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [17] 马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚. 超构天线:原理、器件与应用. 物理学报, 2017, 66(14): 147802. doi: 10.7498/aps.66.147802
    [18] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [19] 沈翔瀛, 黄吉平. 变换热学:热超构材料及其应用. 物理学报, 2016, 65(17): 178103. doi: 10.7498/aps.65.178103
    [20] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
计量
  • 文章访问数:  3284
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-26
  • 修回日期:  2022-09-23
  • 上网日期:  2022-10-27
  • 刊出日期:  2023-01-20

/

返回文章
返回