搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

里德堡原子超外差接收链路中的内禀增益系数研究

吴逢川 安强 姚佳伟 付云起

引用本文:
Citation:

里德堡原子超外差接收链路中的内禀增益系数研究

吴逢川, 安强, 姚佳伟, 付云起

Research on intrinsic expansion coefficients in Rydberg atomic heterodyne receiving link

Wu Feng-Chuan, An Qiang, Yao Jia-Wei, Fu Yun-Qi
PDF
HTML
导出引用
  • 里德堡原子利用其电磁诱导透明效应可以实时响应微弱的微波电场信号, 实现空间微波电场信号的下变频, 作为超外差接收机使用. 里德堡原子超外差接收机是由里德堡原子、光电探测器以及电子信息处理模块等组成的新体制接收系统. 目前, 国内外学者对里德堡原子超外差接收技术的物理响应机理进行了深入研究, 然而在缺乏完整的接收链路分析模型的指导下, 不利于系统性能优化. 本文从里德堡原子响应微波电场的物理机理出发, 引入内禀增益系数的概念, 建立并实验验证了里德堡原子超外差接收机的接收链路模型, 简要讨论了内禀增益系数对系统灵敏度和响应特性的影响, 为里德堡原子超外差接收系统性能优化提供理论指导. 最后对里德堡原子接收链路和电子学接收链路的灵敏度性能进行了讨论和对比.
    Rydberg atom can respond to weak microwave electric field signal in real-time by using its electromagnetically induced transparency effect to realize down conversion of space microwave electric field signal, which can be used as a superheterodyne receiver. The Rydberg atom superheterodyne receiver is a new receiving system composed of Rydberg atoms, photodetectors, and electronic information processing modules. Presently, the physical response mechanism of Rydberg atomic superheterodyne receiving technology is studied in depth. However, no complete receiving link analysis model has been established, which is not conducive to optimizing its system performance. Based on the physical mechanism of the Rydberg atom responding to the microwave electric field, this paper introduces the concept of intrinsic expansion coefficient, establishes and experimentally verifies the receiving link model of the Rydberg atom superheterodyne receiver, and briefly discusses the influence of the intrinsic expansion coefficient on the system sensitivity and response characteristics, thereby providing the theoretical guidance for optimizing the performance of the Rydberg atom superheterodyne receiving system. In the end, the Rydberg atomic and the electronic receiving links' sensitivity performance is discussed and compared.
      通信作者: 安强, anqiang18@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12104509, 61901495)资助的课题.
      Corresponding author: An Qiang, anqiang18@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104509, 61901495).
    [1]

    Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455Google Scholar

    [2]

    Holloway C L, Simons M T, Haddab A H, Gordon J A, Anderson D A, Raithel G, Voran S D 2021 IEEE Antennas Propag. Mag. 63 63Google Scholar

    [3]

    Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar

    [4]

    Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108Google Scholar

    [5]

    Zou H Y, Song Z F, Mu H H, Feng Z G, Qu J F, Wang Q L 2020 Appl. Sci. -Basel 10 1346Google Scholar

    [6]

    Deb A B, Kjaergaard N 2018 Appl. Phys. Lett. 112 211106Google Scholar

    [7]

    Holloway C L, Simons M T, Gordon J A, Novotny, D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853Google Scholar

    [8]

    Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975Google Scholar

    [9]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014047Google Scholar

    [10]

    Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001Google Scholar

    [11]

    Mao R Q, Lin Y, Yang K, An Q, Fu Y Q 2018 IEEE Antennas Wirel. Propag. Lett. Early Access

    [12]

    Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169Google Scholar

    [13]

    Thaicharoen N, Moore K R, Anderson D A, Powel R C, Peterson E, Raithel G 2019 Phys. Rev. A 100 063427Google Scholar

    [14]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102Google Scholar

    [15]

    Kumar S, Fan H, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625Google Scholar

    [16]

    廖开宇, 涂海涛, 张新定, 颜辉, 朱诗亮 2021 中国科学: 物理学 力学 天文学 51 14

    Liao K Y, Tu H T, Zhang X D, Yan H, Zhu S L 2021 Sci. Chin. -Phys. Mech. Astron. 51 14

    [17]

    Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432Google Scholar

    [18]

    Jing M, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T. 2020 Nat. Phys. 16 911Google Scholar

    [19]

    Cai M H, Xu Z S, You S H, Liu H P 2022 Photonics 9 250Google Scholar

    [20]

    Sedlacek J. A, Schwettmann A, Kübler H, Shaffer 2013 Phys. Rev. Lett. 111 063001Google Scholar

    [21]

    Bussey L W, Winterburn A, Menchetti M, Burton F, Whitley T 2021 J. Lightwave Technol. 39 7813Google Scholar

    [22]

    Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101Google Scholar

    [23]

    Anderson D A, Paradis E G, Raithel G 2018 Appl. Phys. Lett. 113 073501Google Scholar

    [24]

    Sapiro R E, Raithel G A, Anderson D 2020 J. Phys. B:At. , Mol. Opt. Phys. 53 094003Google Scholar

    [25]

    Meyer D H, O'Brien C, Fahey D P, Cox K C, Kunz P D 2021 Phys. Rev. A 104 043103Google Scholar

    [26]

    Fancher C T, Scherer D R, John MCS, Schmittbergermarlow B 2021 IEEE Trans. Quantum Eng. 2 3501313Google Scholar

    [27]

    Wu B, Lin Y, Liu Y, An Q, Liao D W, Fu Y Q 2022 Electron. Lett. 58 914Google Scholar

    [28]

    Holloway C L, Prajapati N, Artusio-Glimpse A, Samuel B, Matthew T S, Yoshiaki K, Andrea A, Richard W Z 2022 Appl. Phys. Lett 120 204001Google Scholar

    [29]

    Gabriel S B, Shane V, Eric B, Zoya P 2022 arXiv: 2209.00908 [hep-ph]

  • 图 1  里德堡原子超外差接收机的架构

    Fig. 1.  Block diagram of Rydberg atomic superheterodyne receiver.

    图 2  里德堡原子对微波信号的响应机理

    Fig. 2.  Response mechanism of Rydberg atom to microwave signal.

    图 3  里德堡原子超外差接收机对微波待测信号接收的流程

    Fig. 3.  The process of receiving microwave signal to be measured by Rydberg atomic .superheterodyne receiver.

    图 4  实验系统框图

    Fig. 4.  Block Diagram of Experimental System.

    图 5  信号源发射功率与里德堡原子响应的微波拉比频率关系 (a) 微波参考信号; (b) 微波待测信号

    Fig. 5.  Relationship between the emission power and the microwave Rabi frequency: (a) Microwave reference signal; (b) microwave signal to be measured.

    图 6  信号源设置功率与信号分析仪读取功率关系

    Fig. 6.  Relationship between the emission power and the power read by the signal analyzer.

    图 7  采用Voigt曲线对实验所得EIT-AT分裂光谱曲线进行拟合

    Fig. 7.  Fitting the experimental EIT-AT split spectrum curve with Voigt curves.

    图 8  里德堡原子超外差接收机系统噪底

    Fig. 8.  The system noise floor of Rydberg atomic superheterodyne receiver.

    图 9  不同内禀增益系数对探测光透射功率波动大小的影响

    Fig. 9.  The influence of expansion coefficient on the fluctuation of transmission power of probe laser.

    图 10  内禀增益系数和里德堡原子接收机系统灵敏度之间的关系

    Fig. 10.  Relationship between the expansion coefficient and sensitivity of the Rydberg atomic receiving system.

    图 11  不同内禀增益系数对线性特性的影响

    Fig. 11.  The influence of expansion coefficient on linear characteristic.

    图 12  ΩACPTAC FFT结果之间的关系 (a) ΩAC1 vs PTAC1; (b) ΩAC2 vs PTAC2

    Fig. 12.  Relationship between ΩAC and FFT results of PTAC: (a) ΩAC1 vs PTAC1; (b) ΩAC2 vs PTAC2.

    表 1  计算得到的κ, C1, 以及C4–2C1之间的误差值

    Table 1.  Calculated κ, C1, and the error between C4–2 and C1.

    κ
    /(10–13 W·Hz–1)
    C1
    /(10–4 A2·m2·W–1)
    C4–2 – C1
    /(10–5 A2·m2·W–1)
    |(C4–2 – C1)/C1|
    /%
    8.7931.5090–0.78235.18
    8.9241.5543–1.23537.95
    8.2561.33031.00457.55
    8.3601.36400.66734.89
    8.3151.34940.81376.03
    下载: 导出CSV
  • [1]

    Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455Google Scholar

    [2]

    Holloway C L, Simons M T, Haddab A H, Gordon J A, Anderson D A, Raithel G, Voran S D 2021 IEEE Antennas Propag. Mag. 63 63Google Scholar

    [3]

    Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar

    [4]

    Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108Google Scholar

    [5]

    Zou H Y, Song Z F, Mu H H, Feng Z G, Qu J F, Wang Q L 2020 Appl. Sci. -Basel 10 1346Google Scholar

    [6]

    Deb A B, Kjaergaard N 2018 Appl. Phys. Lett. 112 211106Google Scholar

    [7]

    Holloway C L, Simons M T, Gordon J A, Novotny, D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853Google Scholar

    [8]

    Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975Google Scholar

    [9]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014047Google Scholar

    [10]

    Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001Google Scholar

    [11]

    Mao R Q, Lin Y, Yang K, An Q, Fu Y Q 2018 IEEE Antennas Wirel. Propag. Lett. Early Access

    [12]

    Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169Google Scholar

    [13]

    Thaicharoen N, Moore K R, Anderson D A, Powel R C, Peterson E, Raithel G 2019 Phys. Rev. A 100 063427Google Scholar

    [14]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102Google Scholar

    [15]

    Kumar S, Fan H, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625Google Scholar

    [16]

    廖开宇, 涂海涛, 张新定, 颜辉, 朱诗亮 2021 中国科学: 物理学 力学 天文学 51 14

    Liao K Y, Tu H T, Zhang X D, Yan H, Zhu S L 2021 Sci. Chin. -Phys. Mech. Astron. 51 14

    [17]

    Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432Google Scholar

    [18]

    Jing M, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T. 2020 Nat. Phys. 16 911Google Scholar

    [19]

    Cai M H, Xu Z S, You S H, Liu H P 2022 Photonics 9 250Google Scholar

    [20]

    Sedlacek J. A, Schwettmann A, Kübler H, Shaffer 2013 Phys. Rev. Lett. 111 063001Google Scholar

    [21]

    Bussey L W, Winterburn A, Menchetti M, Burton F, Whitley T 2021 J. Lightwave Technol. 39 7813Google Scholar

    [22]

    Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101Google Scholar

    [23]

    Anderson D A, Paradis E G, Raithel G 2018 Appl. Phys. Lett. 113 073501Google Scholar

    [24]

    Sapiro R E, Raithel G A, Anderson D 2020 J. Phys. B:At. , Mol. Opt. Phys. 53 094003Google Scholar

    [25]

    Meyer D H, O'Brien C, Fahey D P, Cox K C, Kunz P D 2021 Phys. Rev. A 104 043103Google Scholar

    [26]

    Fancher C T, Scherer D R, John MCS, Schmittbergermarlow B 2021 IEEE Trans. Quantum Eng. 2 3501313Google Scholar

    [27]

    Wu B, Lin Y, Liu Y, An Q, Liao D W, Fu Y Q 2022 Electron. Lett. 58 914Google Scholar

    [28]

    Holloway C L, Prajapati N, Artusio-Glimpse A, Samuel B, Matthew T S, Yoshiaki K, Andrea A, Richard W Z 2022 Appl. Phys. Lett 120 204001Google Scholar

    [29]

    Gabriel S B, Shane V, Eric B, Zoya P 2022 arXiv: 2209.00908 [hep-ph]

  • [1] 韩小萱, 孙光祖, 郝丽萍, 白素英, 焦月春. 基于里德伯原子Stark效应射频电场测量灵敏度研究. 物理学报, 2024, 73(9): 093202. doi: 10.7498/aps.73.20240162
    [2] 张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民. 基于里德伯原子天线的低频电场波形测量. 物理学报, 2024, 73(7): 070201. doi: 10.7498/aps.73.20231778
    [3] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量. 物理学报, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [4] 白文杰, 严冬, 韩海燕, 华硕, 谷开慧. 三体里德堡超级原子的关联动力学研究. 物理学报, 2022, 71(1): 014202. doi: 10.7498/aps.71.20211284
    [5] 宋堃, 高太长, 刘西川, 印敏, 薛杨. 基于非球形雨衰模型的微波链路雨强反演方法. 物理学报, 2017, 66(15): 154301. doi: 10.7498/aps.66.154301
    [6] 李洪云, 尹妍妍, 王青, 王立飞. 平行电磁场中里德堡氢原子的自相似结构研究. 物理学报, 2015, 64(18): 180502. doi: 10.7498/aps.64.180502
    [7] 宋堃, 高太长, 刘西川, 印敏, 薛杨. 基于支持向量机的微波链路雨强反演方法. 物理学报, 2015, 64(24): 244301. doi: 10.7498/aps.64.244301
    [8] 高太长, 宋堃, 刘西川, 印敏, 刘磊, 姜世泰. 基于微波链路的路径雨强反演方法及实验研究. 物理学报, 2015, 64(17): 174301. doi: 10.7498/aps.64.174301
    [9] 董慧杰, 王新宇, 李昌勇, 贾锁堂. 镓原子的Stark能级结构. 物理学报, 2015, 64(9): 093201. doi: 10.7498/aps.64.093201
    [10] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量. 物理学报, 2015, 64(16): 160702. doi: 10.7498/aps.64.160702
    [11] 蒋利娟, 张现周, 贾光瑞, 张永慧, 夏立华. 啁啾微波场中里德伯锂原子的相干激发与控制. 物理学报, 2013, 62(1): 013101. doi: 10.7498/aps.62.013101
    [12] 姜世泰, 高太长, 刘西川, 刘磊, 刘志田. 基于微波链路的降雨场反演方法研究. 物理学报, 2013, 62(15): 154303. doi: 10.7498/aps.62.154303
    [13] 李洪云, 岳大光, 梁志强, 伊长虹, 陈建中. 外电场中金属表面附近里德堡氢原子的动力学行为. 物理学报, 2013, 62(20): 203401. doi: 10.7498/aps.62.203401
    [14] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算. 物理学报, 2012, 61(16): 163202. doi: 10.7498/aps.61.163202
    [15] 蒋利娟, 张现周, 马欢强, 贾光瑞, 张永慧, 夏立华. 啁啾微波场中里德伯钠原子高激发态的布居跃迁. 物理学报, 2012, 61(4): 043101. doi: 10.7498/aps.61.043101
    [16] 高嵩, 徐学友, 周慧, 张延惠, 林圣路. 电场中里德伯原子动力学性质的半经典理论研究. 物理学报, 2009, 58(3): 1473-1479. doi: 10.7498/aps.58.1473
    [17] 何永林, 周效信, 李小勇. 用B-样条函数研究静电场中锂原子里德伯态的性质. 物理学报, 2008, 57(1): 116-123. doi: 10.7498/aps.57.116
    [18] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率. 物理学报, 1989, 38(10): 1717-1722. doi: 10.7498/aps.38.1717
    [19] 张森, 邱济真, 王刚. 静电场中Ca原子里德堡态的能级结构. 物理学报, 1989, 38(3): 481-486. doi: 10.7498/aps.38.481
    [20] 张森, 邱济真, 胡素芬, 陆杰, 钟建伟, 梁宜, 孙家祯. Sr原子里德堡态的电场效应. 物理学报, 1988, 37(6): 983-988. doi: 10.7498/aps.37.983
计量
  • 文章访问数:  4050
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2022-11-12
  • 上网日期:  2022-12-17
  • 刊出日期:  2023-02-20

/

返回文章
返回