-
拓扑磁性斯格明子作为信息载体单元具备高可靠性、高集成度、低能耗等优势, 有望提高数据读写精度、降低功耗, 从而研发新型拓扑自旋电子学材料与原理型器件, 为信息技术、5G通信和大数据等的高速发展提供材料与技术支持. 但磁性斯格明子同时存在需要磁场稳定以及电流驱动下斯格明子霍尔效应引起偏转等缺点, 严重阻碍了其在实际器件中的应用, 因此探索新型拓扑磁畴结构和适宜应用的材料体系成为研究的关键. 本文将重点介绍自2013年理论预言磁畴壁斯格明子以来, 利用高分辨率洛伦兹透射电子显微镜原位实空间发现并研究磁畴壁拓扑麦纫和磁畴壁斯格明子的实验工作. 首次在范德瓦耳斯 Fe5–xGeTe2 二维磁性材料中发现温度诱发的180°磁畴壁转变为拓扑麦韧链, 研究了磁畴壁麦纫态在外界电场、磁场作用下的集体运动行为, 揭示了基于自旋重取向、磁畴壁限域效应以及弱相互作用下生成磁畴壁拓扑态的机制. 在该机制指导下, 设计制备了具有自旋重取向的GdFeCo非晶亚铁磁薄膜, 不仅获得了磁畴壁麦纫, 验证了生成机制的普适性, 还成功实现了畴壁麦韧对到畴壁斯格明子的可逆拓扑转变, 开辟了基于磁畴壁等内禀限域效应开展拓扑磁性物态探索和研究的新方向.
-
关键词:
- 磁畴壁麦纫 /
- 磁畴壁斯格明子 /
- 自旋重取向 /
- 洛伦兹透射电子显微镜 /
- 二维磁性材料
Topological magnetic skyrmions, as information units, possess distinct advantages such as high reliability, enhanced integration, and low energy consumption. These novel topological characteristics offer critical material and technological support for the rapid development of information technology, 5G communication, and big data. However, the application of magnetic skyrmions in practical devices is severely impeded by certain limitations, including their stability dependence on magnetic field and the deflection caused by the skyrmion Hall effect under electric current. Consequently, exploring new topological magnetic domain structures and material systems suitable for application becomes a pivotal area of research. This paper primarily focuses on experimental studies utilizing high-resolution Lorentz transmission electron microscopy for in situ real-space observation and manipulation of topological merons and skyrmions inside the magnetic domain wall, confirming the theoretical prediction of magnetic domain wall skyrmions in 2013. We has firstly achieved topological meron chains inside the domain walls by using the spin reorientation transition in two-dimensional van der Waals Fe5–xGeTe2 magnets, and systematically studied the dynamic behavior of domain wall topological magnetic domain structures under external electric and magnetic fields, filling the blanks in this research area. The important and special roles of magnetic domain walls are revealed at the same time. Then the GdFeCo amorphous ferrimagnetic thin film was designed and prepared based on the summarized mechanism with the domain wall meron pairs successfully reproduced. Moreover, the reversible topological transformation from domain wall meron pair to domain wall skyrmions has also been realized without external magnetic field during spin reorientation transformation as temperature changing. The results of micromagnetic simulation and electric experiments on the topological domains in domain walls would provided a strong basis and support for the future research.-
Keywords:
- magnetic domain wall meron /
- magnetic domain wall skyrmion /
- spin reorientation transition /
- Lorentz transmission electron microscopy /
- two-dimensional magnet
[1] Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899Google Scholar
[2] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar
[3] Nayak A K, Kumar V, Ma T, Werner P, Pippel E, Sahoo R, Damay F, Rossler U K, Felser C, Parkin S S P 2017 Nature 548 561Google Scholar
[4] Lin S Z, Hayami S 2016 Phys. Rev. B 93 064430Google Scholar
[5] Yu X Z, Koshibae W, Tokunaga Y, Shibata K, Taguchi Y, Nagaosa N, Tokura Y 2018 Nature 564 95Google Scholar
[6] Lin S Z, Saxena A, Batista C D 2015 Phys. Rev. B 91 224407Google Scholar
[7] Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar
[8] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648Google Scholar
[9] Lin S Z, Reichhardt C, Batista C D, Saxena A 2013 Phys. Rev. B 87 214419Google Scholar
[10] Iroulart E, Rosales H D 2023 J. Phys. Condens. Matter 35 045601Google Scholar
[11] Gao Y, Yin Q W, Wang Q, Li Z L, Cai J W, Zhao T Y, Lei H C, Wang S G, Zhang Y, Shen B G 2020 Adv. Mater. 32 e2005228Google Scholar
[12] Skyrme T H R 1962 Nucl. Phys. 31 556Google Scholar
[13] Rößler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar
[14] Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915Google Scholar
[15] Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198Google Scholar
[16] Zheng F, Rybakov F N, Borisov A B, Song D, Wang S, Li Z A, Du H, Kiselev N S, Caron J, Kovacs A, Tian M, Zhang Y, Blugel S, Dunin-Borkowski R E 2018 Nat. Nanotechnol. 13 451Google Scholar
[17] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar
[18] Boulle O, Vogel J, Yang H, et al. 2016 Nat. Nanotechnol. 11 449Google Scholar
[19] He M, Li G, Zhu Z Z, Zhang Y, Peng L, Li R, Li J, Wei H, Zhao T Y, Zhang X G, Wang S G, Lin S Z, Gu L, Yu G, Cai J W, Shen B G 2018 Phys. Rev. B 97 174419Google Scholar
[20] Moreau-Luchaire C, Mouta S C, Reyren N, Sampaio J, Vaz C A, van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhuter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotechnol. 11 444Google Scholar
[21] Peng L C, Zhang Y, Wang W H, He M, Li L L, Ding B, Li J Q, Sun Y, Zhang X G, Cai J W, Wang S G, Wu G H, Shen B G 2017 Nano Lett. 17 7075Google Scholar
[22] Kurumaji T, Nakajima T, Hirschberger M, Kikkawa A, Yamasaki Y, Sagayama H, Nakao H, Taguchi Y, Arima T H, Tokura Y 2019 Science 365 914Google Scholar
[23] Hirschberger M, Nakajima T, Gao S, Peng L, Kikkawa A, Kurumaji T, Kriener M, Yamasaki Y, Sagayama H, Nakao H, Ohishi K, Kakurai K, Taguchi Y, Yu X, Arima T H, Tokura Y 2019 Nat. Commun. 10 5831Google Scholar
[24] Li Z L, Yin Q W, Jiang Y, Zhu Z Z, Gao Y, Wang S G, Shen J, Zhao T Y, Cai J W, Lei H C, Lin S Z, Zhang Y, Shen B G 2023 Adv. Mater. 35 2211164Google Scholar
[25] Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M, Rosch A 2012 Nat. Phys. 8 301Google Scholar
[26] Jiang W J, Zhang X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J M, Cheng X M, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis S G E 2016 Nat. Phys. 13 162Google Scholar
[27] Chen G 2017 Nat. Phys. 13 112Google Scholar
[28] Shelukhin L A, Gareev R R, Zbarsky V, Walowski J, Münzenberg M, Pertsev N A, Kalashnikova A M 2022 Nanoscale 14 8153Google Scholar
[29] Cheng R, Li M, Sapkota A, Rai A, Pokhrel A, Mewes T, Mewes C, Xiao D, De Graef M, Sokalski V 2019 Phys. Rev. B 99 184412Google Scholar
[30] Jennings P, Sutcliffe P 2013 J. Phys. A Math. Theor. 46 465401Google Scholar
[31] Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nat. Nanotechnol. 9 794Google Scholar
[32] Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944Google Scholar
[33] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar
[34] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar
[35] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar
[36] Seo J, Kim D Y, An E S, Kim K, Kim G Y, Hwang S Y, Kim D W, Gyu J B, Kim H, Eom G, Seo S Y, Stania R, Muntwiler Ms, Lee J, Watanabe K, Taniguchi T, Jo Y J, Lee J, Min B I, Jo M H, Yeom H W, Choi S Y, Shim J H, Kim J S 2020 Sci. Adv. 6 eaay8912Google Scholar
[37] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar
[38] May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z Y, Liu Y H, Xu X D, McGuire M A 2019 ACS Nano 13 4436Google Scholar
[39] Kim K, Seo J, Lee E, Ko K T, Kim B S, Jang B G, Ok J M, Lee J, Jo Y J, Kang W, Shim J H, Kim C, Yeom H W, Il Min B, Yang B J, Kim J S 2018 Nat. Mater. 17 794Google Scholar
[40] Zhang Y, Lu H Y, Zhu X J, Tan S Y, Feng W, Liu Q, Zhang W, Chen Q Y, Liu Y, Luo X B, Xie D H, Luo L Z, Zhang Z J, Lai X C 2018 Sci. Adv. 4 eaao6791Google Scholar
[41] Zhuang H L, Kent P R C, Hennig R G 2016 Phys. Rev. B 93 134407Google Scholar
[42] Gao N, Je S G, Im M Y, Choi J W, Yang M, Li Q, Wang T Y, Lee S, Han H S, Lee K S, Chao W, Hwang C, Li J, Qiu Z Q 2019 Nat. Commun. 10 5603Google Scholar
[43] Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Durr H A, Ostler T A, Barker J, Evans R F, Chantrell R W, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T, Kimel A V 2011 Nature 472 205Google Scholar
[44] Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601Google Scholar
[45] Meiklejohn W 1986 Proc. IEEE 73 1570
[46] Li Z L, Su J, Lin S Z, Liu D, Gao Y, Wang S G, Wei H X, Zhao T Y, Zhang Y, Cai J W, Shen B G 2021 Nat. Commun. 12 5604Google Scholar
[47] Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981Google Scholar
[48] Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotechnol. 8 839Google Scholar
-
图 3 二维磁体Fe5–xGeTe2畴壁中的麦韧链[11] (a) Fe5–xGeTe2的晶体结构示意图, Fe(1)和Ge位置被部分占据(用色差表示); (b), (e) 180 K下两条畴壁对中选定区域的TIE解析面内磁化分布(箭头和颜色分别表示平面内磁化的方向和强度); (c) 250 K面内 180°畴壁的L-TEM图像衬度(标尺为1 μm); (d)麦韧对在温度降低过程中的衬度演化; (f) 180°畴壁的三维内部磁矩排布示意图; (g), (h)两种手性(顺时针和逆时针)的麦韧结构
Fig. 3. Meron chains inside domain walls in 2D ferromagnets Fe5–xGeTe2[11]: (a) Crystal structures of Fe5–xGeTe2, and the positions of Fe(1) and Ge is partially occupied (labelled by color difference); (b), (e) the in-plane magnetization resolved by TIE in the selected regions of two domain walls at 180 K (arrow and color represents direction and amplitude of in-plane magnetization respectively); (c) the L-TEM contrast of in-plane 180° domain walls at 250 K (the scale is 1 μm); (d) evolution of meron pair contrast during cooling process; (f) 3D distribution of magnetization inside 180° domain walls; (g), (h) merons with two different chirality (clockwise and anti-clockwise).
图 4 Fe5–xGeTe2中畴壁麦韧链生成的物理机制[11] (a)磁化率χ在磁场沿两个方向(H//c和H//ab)时的温度依赖曲线; (b)不同温度下磁场沿垂直方向和面内方向(H//c和H//ab)的M-H曲线; (c)自旋重取向区间存在的平行和垂直于c轴的磁畴结构; (d), (e)温度高于100 K (d)和低于100 K (e)时, [110]晶带轴的选区电子衍射图
Fig. 4. Origin of domain wall meron chains in Fe5–xGeTe2[11]: (a) Temperature dependence of magnetic susceptibility χ as the magnetic field along two directions (H//c and H//ab); (b) M-H curve as magnetic fields along out-of-plane and in-plane direction (H//c and H//ab) at different temperature; (c) directions of domains parallel and perpendicular to c axis during SRT; (d), (e) SAED patterns of [110] ribbon axis at temperature above 100 K (d) and below 100 K (e).
图 5 麦韧链的动力学行为[11] (a)样品施加电压的电路结构示意图; (b), (c)麦韧链在电压作用后的位置变化; (d)沿c轴倾斜样品引入磁场的示意图; (e), (f)固定垂直磁场为0.02 T下, 畴壁麦韧链在样品倾斜角度为4°和–12° 的位置分布; (g)畴壁麦韧链间距随倾斜角的变化(标尺为500 nm)
Fig. 5. Dynamic behavior of meron chains[11]: (a) Schematics of circuit when applying; (b), (c) position change of meron chains after applying voltage; (d) schematics of introduced magnetic field with sample tilted along c-axis; (e), (f) distribution of domain wall meron chain positions at the sample tilted angle of 4° and –12° with fixed perpendicular field of 0.02 T; (g) interval between domain wall meron chains with the variation of tilted angle (The scale bar is 500 nm).
图 6 随温度变化畴壁麦韧对与畴壁斯格明子之间转化[46] (a)—(e) 不同温度时, 样品Gd15+x(Fe94Co6)85–x (x = 0.2)在L-TEM下的磁畴壁衬度; (f), (g) 243 K畴壁两侧和内部磁矩强度输运方程解析结果; (h) 图(a)—(e)中黄框部分放大; (i), (j) 300 K畴壁两侧和内部磁矩强度输运方程解析结果(标尺为2 μm)
Fig. 6. Meron pair contrast change with temperature[46]: (a)–(e) Evolution of domain wall L-TEM contrast with temperature in Gd15+x(Fe94Co6)85–x (x = 0.2); (f), (g) TIE results inside and outside domain walls at 243 K; (h) enlarged part of yellow box in panels (a)–(e); (i), (j) TIE results inside and outside domain walls at 300 K (The scale bar is 2 μm).
图 7 磁性参数变化决定的磁畴壁拓扑结构演变及微磁学模拟结果[46] (a) Gd15+x(Fe96Co6)85–x (x = 0.2)样品不同温度下的单轴各向异性常数Ku和饱和磁化强度Ms实验数据; (b)不同Ku和Ms下麦韧对拓扑数演化结果相图及实验中自旋重取向转变温区所在区域; (c), (h) L-TEM衬度模拟结果; (d)—(g) 270—300 K麦韧对到斯格明子的模拟畴壁演化, 面外磁化由红色(+mz)和蓝色(–mz)表示, 面内磁化由白色区域和黑色箭头表示; (i)—(k)对应的自旋结构示意图立体投影
Fig. 7. Micromagnetic simulation results of domain wall topological transition[46]: (a) Experimental data of anisotropy constant Ku and saturation magnetization Ms at different temperature in Gd15+x(Fe96Co6)85–x (x = 0.2); (b) the phase diagram of topological transition starting from meron pair at different Ku and Ms value and the SRT regions observed in experiment; (c), (h) simulation results of corresponding L-TEM contrast; (d)–(g) evolution from meron pairs to skyrmions by simulation at 270–300 K, the out-of-plane magnetization is indicated by red (+mz) and blue (–mz), the in-plane magnetization is indicated by white region and black arrows; (i)–(k) 3D schematics of corresponding spin structures.
-
[1] Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899Google Scholar
[2] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar
[3] Nayak A K, Kumar V, Ma T, Werner P, Pippel E, Sahoo R, Damay F, Rossler U K, Felser C, Parkin S S P 2017 Nature 548 561Google Scholar
[4] Lin S Z, Hayami S 2016 Phys. Rev. B 93 064430Google Scholar
[5] Yu X Z, Koshibae W, Tokunaga Y, Shibata K, Taguchi Y, Nagaosa N, Tokura Y 2018 Nature 564 95Google Scholar
[6] Lin S Z, Saxena A, Batista C D 2015 Phys. Rev. B 91 224407Google Scholar
[7] Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar
[8] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648Google Scholar
[9] Lin S Z, Reichhardt C, Batista C D, Saxena A 2013 Phys. Rev. B 87 214419Google Scholar
[10] Iroulart E, Rosales H D 2023 J. Phys. Condens. Matter 35 045601Google Scholar
[11] Gao Y, Yin Q W, Wang Q, Li Z L, Cai J W, Zhao T Y, Lei H C, Wang S G, Zhang Y, Shen B G 2020 Adv. Mater. 32 e2005228Google Scholar
[12] Skyrme T H R 1962 Nucl. Phys. 31 556Google Scholar
[13] Rößler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar
[14] Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915Google Scholar
[15] Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198Google Scholar
[16] Zheng F, Rybakov F N, Borisov A B, Song D, Wang S, Li Z A, Du H, Kiselev N S, Caron J, Kovacs A, Tian M, Zhang Y, Blugel S, Dunin-Borkowski R E 2018 Nat. Nanotechnol. 13 451Google Scholar
[17] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar
[18] Boulle O, Vogel J, Yang H, et al. 2016 Nat. Nanotechnol. 11 449Google Scholar
[19] He M, Li G, Zhu Z Z, Zhang Y, Peng L, Li R, Li J, Wei H, Zhao T Y, Zhang X G, Wang S G, Lin S Z, Gu L, Yu G, Cai J W, Shen B G 2018 Phys. Rev. B 97 174419Google Scholar
[20] Moreau-Luchaire C, Mouta S C, Reyren N, Sampaio J, Vaz C A, van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhuter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotechnol. 11 444Google Scholar
[21] Peng L C, Zhang Y, Wang W H, He M, Li L L, Ding B, Li J Q, Sun Y, Zhang X G, Cai J W, Wang S G, Wu G H, Shen B G 2017 Nano Lett. 17 7075Google Scholar
[22] Kurumaji T, Nakajima T, Hirschberger M, Kikkawa A, Yamasaki Y, Sagayama H, Nakao H, Taguchi Y, Arima T H, Tokura Y 2019 Science 365 914Google Scholar
[23] Hirschberger M, Nakajima T, Gao S, Peng L, Kikkawa A, Kurumaji T, Kriener M, Yamasaki Y, Sagayama H, Nakao H, Ohishi K, Kakurai K, Taguchi Y, Yu X, Arima T H, Tokura Y 2019 Nat. Commun. 10 5831Google Scholar
[24] Li Z L, Yin Q W, Jiang Y, Zhu Z Z, Gao Y, Wang S G, Shen J, Zhao T Y, Cai J W, Lei H C, Lin S Z, Zhang Y, Shen B G 2023 Adv. Mater. 35 2211164Google Scholar
[25] Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M, Rosch A 2012 Nat. Phys. 8 301Google Scholar
[26] Jiang W J, Zhang X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J M, Cheng X M, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis S G E 2016 Nat. Phys. 13 162Google Scholar
[27] Chen G 2017 Nat. Phys. 13 112Google Scholar
[28] Shelukhin L A, Gareev R R, Zbarsky V, Walowski J, Münzenberg M, Pertsev N A, Kalashnikova A M 2022 Nanoscale 14 8153Google Scholar
[29] Cheng R, Li M, Sapkota A, Rai A, Pokhrel A, Mewes T, Mewes C, Xiao D, De Graef M, Sokalski V 2019 Phys. Rev. B 99 184412Google Scholar
[30] Jennings P, Sutcliffe P 2013 J. Phys. A Math. Theor. 46 465401Google Scholar
[31] Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nat. Nanotechnol. 9 794Google Scholar
[32] Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944Google Scholar
[33] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar
[34] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar
[35] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar
[36] Seo J, Kim D Y, An E S, Kim K, Kim G Y, Hwang S Y, Kim D W, Gyu J B, Kim H, Eom G, Seo S Y, Stania R, Muntwiler Ms, Lee J, Watanabe K, Taniguchi T, Jo Y J, Lee J, Min B I, Jo M H, Yeom H W, Choi S Y, Shim J H, Kim J S 2020 Sci. Adv. 6 eaay8912Google Scholar
[37] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar
[38] May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z Y, Liu Y H, Xu X D, McGuire M A 2019 ACS Nano 13 4436Google Scholar
[39] Kim K, Seo J, Lee E, Ko K T, Kim B S, Jang B G, Ok J M, Lee J, Jo Y J, Kang W, Shim J H, Kim C, Yeom H W, Il Min B, Yang B J, Kim J S 2018 Nat. Mater. 17 794Google Scholar
[40] Zhang Y, Lu H Y, Zhu X J, Tan S Y, Feng W, Liu Q, Zhang W, Chen Q Y, Liu Y, Luo X B, Xie D H, Luo L Z, Zhang Z J, Lai X C 2018 Sci. Adv. 4 eaao6791Google Scholar
[41] Zhuang H L, Kent P R C, Hennig R G 2016 Phys. Rev. B 93 134407Google Scholar
[42] Gao N, Je S G, Im M Y, Choi J W, Yang M, Li Q, Wang T Y, Lee S, Han H S, Lee K S, Chao W, Hwang C, Li J, Qiu Z Q 2019 Nat. Commun. 10 5603Google Scholar
[43] Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Durr H A, Ostler T A, Barker J, Evans R F, Chantrell R W, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T, Kimel A V 2011 Nature 472 205Google Scholar
[44] Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601Google Scholar
[45] Meiklejohn W 1986 Proc. IEEE 73 1570
[46] Li Z L, Su J, Lin S Z, Liu D, Gao Y, Wang S G, Wei H X, Zhao T Y, Zhang Y, Cai J W, Shen B G 2021 Nat. Commun. 12 5604Google Scholar
[47] Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981Google Scholar
[48] Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotechnol. 8 839Google Scholar
计量
- 文章访问数: 3857
- PDF下载量: 212
- 被引次数: 0