搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

边修饰GeS2纳米带的电子特性及调控效应

李景辉 曹胜果 韩佳凝 李占海 张振华

引用本文:
Citation:

边修饰GeS2纳米带的电子特性及调控效应

李景辉, 曹胜果, 韩佳凝, 李占海, 张振华

Electronic properties and modulation effects on edge-modified GeS2 nanoribbons

Li Jing-Hui, Cao Sheng-Guo, Han Jia-Ning, Li Zhan-Hai, Zhang Zhen-Hua
PDF
HTML
导出引用
  • GeS2单层已成功制备, 为了进一步扩展其应用范围以及发现新的物理特性, 我们构建扶手椅型GeS2纳米带 (AGeS2NR) 模型, 并采用不同浓度的H或O原子进行边缘修饰, 且对其结构稳定性、电子特性、载流子迁移率以及物理场调控效应进行深入研究. 研究表明边修饰纳米带具有良好的能量与热稳定性. 裸边纳米带是无磁半导体, 而边修饰能改变AGeS2NR的带隙, 使其成为宽带隙或窄带隙半导体, 或金属, 这与边缘态消除或部分消除或产生杂化能带有关, 所以边缘修饰调控扩展了纳米带在电子器件及光学器件领域的应用范围. 此外, 计算发现载流子迁移率对边缘修饰十分敏感, 可以调节纳米带载流子迁移率 (电子、空穴) 的差异达到1个数量级, 同时产生载流子极化达到1个数量级. 研究还表明半导体性纳米带在较大的应变范围内具有保持电子相不变的鲁棒性, 对于保持相关器件电子输运的稳定性是有益的. 绝大部分半导体性纳米带在较高的外电场作用下, 都具有保持半导体特性不变的稳定性, 但带隙随电场增大而明显变小. 总之, 本研究为理解GeS2纳米带特性并研发相关器件提供了理论分析及参考.
    GeS2 monolayers have been successfully prepared in this work. To further expand their applications and discover new physical properties, we construct armchair-type GeS2 nanoribbons (AGeS2NR) and use different concentrations of H and O atoms for the edge modificationand their structural stabilities, electronic properties, carrier mobilities, and physical field modulation effects are studied in depth. The results show that the edge-modified nanoribbon has a higher energy and thermal stability. The bare edge nanoribbon is a nonmagnetic semiconductor, while the edge modification can change the bandgap of AGeS2NR and make it a wide or narrowed bandgap semiconductor, or a metal, which is closely related to the elimination or partial elimination of the edge states or the creation of hybridization bands. Thus edge modification extends the application range of nanoribbons in the fields of electronic devices and optical devices. In addition, the carrier mobility is found to be very sensitive to the edge modification: the carriers’ (electrons’ and holes’) mobilities of nanoribbons can be adjusted to a difference of up to one order of magnitude, and the difference in carrier mobility polarization can be tuned to one order of magnitude. Strain effect studies reveal that the semiconducting nanoribbons are robust in keeping the electronic phase unchanged over a wide strain range, which is useful for maintaining the stability of the electron transport in the related device. Most of the semiconducting nanoribbons have the stability to keep the semiconducting properties unchanged under high external electric field, but the bandgap can be reduced significantly with the increase of the electric field. In short, this study provides a theoretical analysis and reference for understanding the property of GeS2 nanoribbons and developing related devices.
      通信作者: 曹胜果, caoshengguo@stu.csust.edu.cn ; 张振华, zhzhang@csust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61771076)和湖南省研究生创新项目(批准号: CX20200820)资助的课题.
      Corresponding author: Cao Sheng-Guo, caoshengguo@stu.csust.edu.cn ; Zhang Zhen-Hua, zhzhang@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61771076) and the Postgraduate Innovation Program of Hunan Province, China (Grant No. CX20200820).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhuang J C, Xu X, Feng H F, Li Z, Wang X L, Du Y 2015 Sci. Bull. 60 1551Google Scholar

    [3]

    Tran V, Soklaski R, Liang Y F, Yang L 2014 Phys. Rev. B 89 817

    [4]

    Zhang S L, Guo S Y, Chen Z F, Wang Y L, Gao H J, Gomez-Herrero J, Ares P, Zamora F, Zhu Z, Zeng H B 2018 Chem. Soc. Rev. 47 982Google Scholar

    [5]

    Song L, Ci L J, Lu H, Sorokin P B, Jin C H, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209Google Scholar

    [6]

    Qu H Z, Guo S Y, Zhou W H, Wu Z H, Cao J, Li Z, Zeng H B, Zhang S L 2022 Phys. Rev. B 105 075413Google Scholar

    [7]

    Zhang S L, Zhou W H, Ma Y D, Ji J P, Cai B, Yang S A, Zhu Z, Chen Z F, Zeng H B 2017 Nano Lett. 17 3434Google Scholar

    [8]

    Li H, Wu J, Yin Z Y, Zhang H 2014 Acc Chem. Res. 47 1067Google Scholar

    [9]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815Google Scholar

    [10]

    Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S, Shekhar C, Sun Y 2016 Nat. Commun. 7 11038Google Scholar

    [11]

    Nandi P, Rawat A, Ahammed R, Jena N, Sarkar A D 2021 Nanoscale 13 5460Google Scholar

    [12]

    Chen H, Keiser C, Du S, Gao H J, Sutter P, Sutter E 2017 Phys. Chem. Chem. Phys. 19 32473Google Scholar

    [13]

    Hahn T, Theo 1983 International Tables for Crystallography (Vol. 1) (Dordrecht: Reidel) p182

    [14]

    Wilson E B, Decius J C, Cross P C 1980 Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra (Courier Corporation

    [15]

    Gao R L, Yong Y L, Yuan X B, Hu S, Hou Q H, Kuang Y M 2022 ACS Omega 7 46440Google Scholar

    [16]

    Ruan X Y, Xiong R, Cui Z, Wen C L, Ma J J, Wang B T, Sa B S 2022 Materials 15 4016Google Scholar

    [17]

    Mao Y L, Zhang G H 2020 Physica B 581 411673Google Scholar

    [18]

    Do T N, Hieu N N, Poklonski N A, Nguyen C Q, Hien N D 2021 RSC Adv. 3 28381

    [19]

    Wang X L, Feng W, Shen C, Sun Z H, Qi H B, Yang M, Liu Y H, Wu Y C, Wu X Q 2021 Front. Mater. 8 709757Google Scholar

    [20]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar

    [21]

    Gan Y J, Sun L T, Banhart F 2008 Small 4 587Google Scholar

    [22]

    Jippo H, Ohfuchi M J 2013 J. Appl. Phys. 113 183715Google Scholar

    [23]

    Chen H L, Zhang L, Deng X Q, Sun L, Zhang Z H, Fan Z Q 2021 J. Mater. Chem. C 9 12904Google Scholar

    [24]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [25]

    徐永虎, 邓小清, 孙琳, 范志强, 张振华 2022 物理学报 71 046102Google Scholar

    Xu Y H, Deng X Q, Sun L, Fan Z Q, Zhang Z H 2022 Acta Phys. Sin. 71 046102Google Scholar

    [26]

    曹胜果, 韩佳凝, 李占海, 张振华 2023 物理学报 72 117101Google Scholar

    Cao S G, Han J N, Li Z H, Zhang Z H 2023 Acta Phys. Sin. 72 117101Google Scholar

    [27]

    Li Z H, Han J N, Cao S G, Zhang Z H 2023 Appl. Surf. Sci. 636 157766Google Scholar

    [28]

    汤家鑫, 李占海, 邓小清, 张振华 2023 物理学报 72 167101Google Scholar

    Tang J X, Li Z H, Deng X Q, Zhang Z H 2023 Acta Phys. Sin. 72 167101Google Scholar

    [29]

    Li Z H, Han J N, Cao S G, Zhang Z H 2023 Appl. Surf. Sci. 614 156095Google Scholar

    [30]

    Li Z H, Han J N, Cao S G, Zhang Z H 2023 Phys. Rev. B 108 184413Google Scholar

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [32]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993Google Scholar

    [33]

    Soler J M, Artacho E, Gale J D, Junquera J, Garcia A 2002 J. Phys. Condens. Matter 14 2745Google Scholar

    [34]

    Biswas R, Hamann D R 1986 Phys. Rev. B 34 895Google Scholar

    [35]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [36]

    Yuan P F, Fan Z Q, Zhang Z H 2017 Carbon 124 228Google Scholar

    [37]

    Long M Q, Tang L, Wang D, Li Y L, Shuai Z G 2011 ACS Nano 5 2593Google Scholar

    [38]

    Beleznay F B, Bogár F, Ladik J, 2003 J. Chem. Phys. 119 5690Google Scholar

    [39]

    Han J N, He X, Fan Z Q, Zhang Z H 2019 Phys. Chem. Chem. Phys. 21 1830Google Scholar

    [40]

    Zhao T, Fan Z Q, Zhang Z H, Zhou R L 2019 J. Phys. D Appl. Phys. 52 475301Google Scholar

    [41]

    Zhang Z H, Liu X F, Yu J, Hang Y, Li Y, Guo Y F, Xu Y, Sun X, Zhou J X, Guo W L 2016 Wires Comput. Mol. Sci. 6 324Google Scholar

    [42]

    Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R 2014 Nano Lett. 14 4592Google Scholar

  • 图 1  (a) 2D GeS2原子结构及其能带结构和轨道投影态密度. 优化之后裸边及锯齿型纳米带的几何结构及能带结构 (b) 手性纳米带; (c) Ge-S边缘锯齿型纳米带; (d) S-Ge边缘锯齿型纳米带; (e) S-S边缘锯齿型纳米带. 优化之后扶手椅型纳米带的几何结构 (f) 裸边NR (N0); (g) H-S-NR (N1); (h) H-NR-H (N2); (i) H2H-NR-H2H (N3); (j) H-NR-O2O (N4), (k) H2H-NR-O2O (N5)

    Fig. 1.  (a) 2D GeS2 atomic structure and its band structure and orbital projection density. Optimized geometries and its band structure: (b) Chiral nanoribbon; (c) Ge-S edge ZGeS2NR; (d) S-Ge edge ZGeS2NR; (e) S-S edge ZGeS2NR. Optimized geometries: (f) Bare-edged NR (N0); (g) H-S-NR (N1); (h) H-NR-H (N2); (i) H2H-NR-H2H (N3); (j) H-NR-O2O (N4); (k) H2H-NR-O2O (N5).

    图 2  淬火后纳米带的几何结构 (a) N0, (b) N1, (c) N2, (d) N3, (e) N4, (f) N5; 纳米带的电荷密度差 (g) N1, (h) N2, (i) N3, (j) N4, (k) N5; 青色表示失去电子, 洋红色表示得到电子, 等值面为 0.005 e3, 每个图旁边的数字表示H或O获得的电子数量

    Fig. 2.  Geometry of quenched nanoribbons: (a) N0, (b) N1, (c) N2, (d) N3, (e) N4, (f) N5. Differential charge densities of nanoribbons: (g) N1, (h) N2, (i) N3, (j) N4, (k) N5. Cyan denotes loss of electrons, magenta denotes gain of electrons, and the isosurfaces are 0.005 e3. Numbers next to each plot denote the number of electrons gained by either H or O.

    图 3  纳米带的能带结构、投影态密度及部分电荷密度 (a) N0, (b) N1, (c) N2, (d) N3, (e) N4, (f) N5, 等值面为 0.02|e–3

    Fig. 3.  The band structure, projected density of states and partial charge density for nanoribbons: (a) N0, (b) N1, (c) N2, (d) N3, (e) N4, (f) N5, where equivalent surface is set to 0.02|e| Å–3.

    图 4  半导体性纳米带Ni (i = 0, 1, 3, 5)沿输运方向的电子和空穴的(a) 有效质量m*, (b) 形变势常数E1和拉伸模量C, (c) 载流子迁移率µ (其中h对应空穴, e对应电子); (d) N1纳米带的CBM和VBM的Bloch态, 等值面为0.05e3

    Fig. 4.  (a) Effective mass m*, (b) deformation potential constant E1 and tensile modulus C, (c) carrier mobility μ for electrons and holes in semiconducting nanoribbons Ni (i = 0, 1, 3, 5) along the transport direction, where h for holes and e for electrons; (d) Bloch states of CBM and VBM for N1 nanoribbon, and the isosurfaces are 0.05e3.

    图 5  (a) 施加应变示意图; (b) 半导体性纳米带Ni (i = 0, 1, 3, 5) 的应变能与应变的关系. Ni的带边(CBM和VBM) 和电子相随应变ε的演变 (c) N0; (d) N1; (e) N3; (f) N5

    Fig. 5.  (a) Schematic diagram of applied strain; (b) strain energy versus strain for semiconducting nanoribbons Ni (i = 0, 1, 3, 5). Evolution of band edges (CBM and VBM) and electronic phase versus strain ε: (c) N0; (d) N1; (e) N3; (f) N5.

    图 6  N0的应变效应 (a) 能带结构与应变的关系; (b) 键长与键角随应变的变化; (c) 5种典型应变HVB在Z点的布洛赫态, 等值面为 0.04e3; (d) 5种典型应变下边缘上S原子和Ge原子的投影态密度 (PDOS)

    Fig. 6.  Strain effects for N0: (a) Band structure versus strain; (b) bond length and bond angle versus strain; (c) Bloch states at the Z point for five typical strains of HVB, with an isosurface of 0.04e3; (d) projected densities of states (PDOS) for S and Ge atoms on the edge at five typical strains.

    图 7  (a) 施加电场示意图; (b) 半导体性纳米带Ni (i = 0, 1, 3, 5) 的电场能与电场的关系. Ni的带边 (CBM和VBM) 和电子相随电场的演变 (c) N0; (d) N1; (e) N3; (f) N5

    Fig. 7.  (a) Schematic diagram of applied external electric field; (b) electric field energy versus electric field for the semiconducting nanoribbons Ni (i = 0, 1, 3, 5). Evolution of band edges (CBM and VBM) and electronic phases of Ni with electric field: (c) N0; (d) N1; (e) N3; (f) N5.

    图 8  N1的电场效应 (a) 能带结构与电场的关系; (b)带隙随电场的变化; (c) 3个典型电场值下, 子带1在Z点的布洛赫态; (d) 3个典型电场值下, 子带2在Z点的布洛赫态, 等值面设为 0.06e3

    Fig. 8.  Electric field effects for N1: (a) Band structure versus electric field; (b) band gap versus electric field; (c) Bloch state of subband 1 at the Z point for three typical values of the electric field; (d) Bloch state of subband 2 at the Z point for three typical values of the electric field, with an isosurface of 0.06e3.

    表 1  纳米带Ni (i = 0, 1, 2, 3, 4, 5)的边形成能Ef (单位: eV/Å)和带边缘的几何参数, 即S—Ge键长d1d2 (单位: Å)以及两个边缘S—Ge键之间的夹度θ (单位: (°))

    Table 1.  Edge formation energy Ef (in eV/Å) and geometrical parameters of the ribbon edges for the nanoribbon Ni (i = 0, 1, 2, 3, 4, 5), i.e., S—Ge bond lengths d1 and d2 (in Å) and bond angle θ (in (°)) between the two edge S—Ge bonds.

    Structure N0 N1 N2 N3 N4 N5
    d1 2.44 2.42 2.51 2.49 2.49 2.52
    d2 2.20 2.69 2.53 2.50 2.43 2.40
    θ/(°) 146.64 170.49 175.89 166.77 176.11 179.07
    Ef /(eV·Å–1) 0 –1.293 –1.735 –2.323 –2.704 –2.996
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhuang J C, Xu X, Feng H F, Li Z, Wang X L, Du Y 2015 Sci. Bull. 60 1551Google Scholar

    [3]

    Tran V, Soklaski R, Liang Y F, Yang L 2014 Phys. Rev. B 89 817

    [4]

    Zhang S L, Guo S Y, Chen Z F, Wang Y L, Gao H J, Gomez-Herrero J, Ares P, Zamora F, Zhu Z, Zeng H B 2018 Chem. Soc. Rev. 47 982Google Scholar

    [5]

    Song L, Ci L J, Lu H, Sorokin P B, Jin C H, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209Google Scholar

    [6]

    Qu H Z, Guo S Y, Zhou W H, Wu Z H, Cao J, Li Z, Zeng H B, Zhang S L 2022 Phys. Rev. B 105 075413Google Scholar

    [7]

    Zhang S L, Zhou W H, Ma Y D, Ji J P, Cai B, Yang S A, Zhu Z, Chen Z F, Zeng H B 2017 Nano Lett. 17 3434Google Scholar

    [8]

    Li H, Wu J, Yin Z Y, Zhang H 2014 Acc Chem. Res. 47 1067Google Scholar

    [9]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815Google Scholar

    [10]

    Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S, Shekhar C, Sun Y 2016 Nat. Commun. 7 11038Google Scholar

    [11]

    Nandi P, Rawat A, Ahammed R, Jena N, Sarkar A D 2021 Nanoscale 13 5460Google Scholar

    [12]

    Chen H, Keiser C, Du S, Gao H J, Sutter P, Sutter E 2017 Phys. Chem. Chem. Phys. 19 32473Google Scholar

    [13]

    Hahn T, Theo 1983 International Tables for Crystallography (Vol. 1) (Dordrecht: Reidel) p182

    [14]

    Wilson E B, Decius J C, Cross P C 1980 Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra (Courier Corporation

    [15]

    Gao R L, Yong Y L, Yuan X B, Hu S, Hou Q H, Kuang Y M 2022 ACS Omega 7 46440Google Scholar

    [16]

    Ruan X Y, Xiong R, Cui Z, Wen C L, Ma J J, Wang B T, Sa B S 2022 Materials 15 4016Google Scholar

    [17]

    Mao Y L, Zhang G H 2020 Physica B 581 411673Google Scholar

    [18]

    Do T N, Hieu N N, Poklonski N A, Nguyen C Q, Hien N D 2021 RSC Adv. 3 28381

    [19]

    Wang X L, Feng W, Shen C, Sun Z H, Qi H B, Yang M, Liu Y H, Wu Y C, Wu X Q 2021 Front. Mater. 8 709757Google Scholar

    [20]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar

    [21]

    Gan Y J, Sun L T, Banhart F 2008 Small 4 587Google Scholar

    [22]

    Jippo H, Ohfuchi M J 2013 J. Appl. Phys. 113 183715Google Scholar

    [23]

    Chen H L, Zhang L, Deng X Q, Sun L, Zhang Z H, Fan Z Q 2021 J. Mater. Chem. C 9 12904Google Scholar

    [24]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [25]

    徐永虎, 邓小清, 孙琳, 范志强, 张振华 2022 物理学报 71 046102Google Scholar

    Xu Y H, Deng X Q, Sun L, Fan Z Q, Zhang Z H 2022 Acta Phys. Sin. 71 046102Google Scholar

    [26]

    曹胜果, 韩佳凝, 李占海, 张振华 2023 物理学报 72 117101Google Scholar

    Cao S G, Han J N, Li Z H, Zhang Z H 2023 Acta Phys. Sin. 72 117101Google Scholar

    [27]

    Li Z H, Han J N, Cao S G, Zhang Z H 2023 Appl. Surf. Sci. 636 157766Google Scholar

    [28]

    汤家鑫, 李占海, 邓小清, 张振华 2023 物理学报 72 167101Google Scholar

    Tang J X, Li Z H, Deng X Q, Zhang Z H 2023 Acta Phys. Sin. 72 167101Google Scholar

    [29]

    Li Z H, Han J N, Cao S G, Zhang Z H 2023 Appl. Surf. Sci. 614 156095Google Scholar

    [30]

    Li Z H, Han J N, Cao S G, Zhang Z H 2023 Phys. Rev. B 108 184413Google Scholar

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [32]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993Google Scholar

    [33]

    Soler J M, Artacho E, Gale J D, Junquera J, Garcia A 2002 J. Phys. Condens. Matter 14 2745Google Scholar

    [34]

    Biswas R, Hamann D R 1986 Phys. Rev. B 34 895Google Scholar

    [35]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [36]

    Yuan P F, Fan Z Q, Zhang Z H 2017 Carbon 124 228Google Scholar

    [37]

    Long M Q, Tang L, Wang D, Li Y L, Shuai Z G 2011 ACS Nano 5 2593Google Scholar

    [38]

    Beleznay F B, Bogár F, Ladik J, 2003 J. Chem. Phys. 119 5690Google Scholar

    [39]

    Han J N, He X, Fan Z Q, Zhang Z H 2019 Phys. Chem. Chem. Phys. 21 1830Google Scholar

    [40]

    Zhao T, Fan Z Q, Zhang Z H, Zhou R L 2019 J. Phys. D Appl. Phys. 52 475301Google Scholar

    [41]

    Zhang Z H, Liu X F, Yu J, Hang Y, Li Y, Guo Y F, Xu Y, Sun X, Zhou J X, Guo W L 2016 Wires Comput. Mol. Sci. 6 324Google Scholar

    [42]

    Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R 2014 Nano Lett. 14 4592Google Scholar

  • [1] 王颂文, 郭红霞, 马腾, 雷志锋, 马武英, 钟向丽, 张鸿, 卢小杰, 李济芳, 方俊霖, 曾天祥. 石墨烯场效应晶体管在不同偏置电压条件下的电应力可靠性研究. 物理学报, 2024, 73(23): . doi: 10.7498/aps.20241365
    [2] 王颂文, 郭红霞, 马腾, 雷志锋, 马武英, 钟向丽, 张鸿, 卢小杰, 李济芳, 方俊霖, 曾天祥. 石墨烯场效应晶体管在不同偏置电压条件下的电应力可靠性. 物理学报, 2024, 73(23): 238501. doi: 10.7498/aps.73.20241365
    [3] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 不同相NbS2与GeS2构成的二维金属-半导体异质结的电接触性质. 物理学报, 2024, 73(13): 137102. doi: 10.7498/aps.73.20240530
    [4] 潘佳萍, 张冶文, 李俊, 吕天华, 郑飞虎. 结合电子束辐照与压电压力波法空间电荷分布实时测量的空间电荷包迁移行为的研究. 物理学报, 2024, 73(2): 027701. doi: 10.7498/aps.73.20231353
    [5] 陆康俊, 王一帆, 夏谦, 张贵涛, 陈乾. 结构相变引起单层RuSe2载流子迁移率的提高. 物理学报, 2024, 73(14): 146302. doi: 10.7498/aps.73.20240557
    [6] 韩佳凝, 黄俊铭, 曹胜果, 李占海, 张振华. 非金属原子掺杂扶手椅型砷烯纳米管的磁电子性质及调控. 物理学报, 2023, 72(19): 197101. doi: 10.7498/aps.72.20230644
    [7] 曹胜果, 韩佳凝, 李占海, 张振华. 扶手椅型C3B纳米带: 结构稳定性、电子特性及调控效应. 物理学报, 2023, 72(11): 117101. doi: 10.7498/aps.72.20222434
    [8] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究. 物理学报, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [9] 汤家鑫, 范志强, 邓小清, 张振华. 非金属原子掺杂的GaN纳米管: 电子结构、输运特性及电场调控效应. 物理学报, 2022, 71(11): 116101. doi: 10.7498/aps.71.20212342
    [10] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2022, 71(4): 046102. doi: 10.7498/aps.71.20211748
    [11] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率. 物理学报, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [12] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性. 物理学报, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [13] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211748
    [14] 王丹, 邹娟, 唐黎明. 氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究. 物理学报, 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [15] 刘雅楠, 路俊哲, 祝恒江, 唐宇超, 林响, 刘晶, 王婷. 锯齿型碳纳米管的结构衍生及电子特性. 物理学报, 2017, 66(9): 093601. doi: 10.7498/aps.66.093601
    [16] 邓发明. 强激光照射对6H-SiC晶体电子特性的影响. 物理学报, 2016, 65(10): 107101. doi: 10.7498/aps.65.107101
    [17] 邓发明. 强激光照射对2H-SiC晶体电子特性的影响. 物理学报, 2015, 64(22): 227101. doi: 10.7498/aps.64.227101
    [18] 李骏, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带卷曲效应对其电子特性的影响. 物理学报, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [19] 曾永昌, 田文, 张振华. 周期性纳米洞内边缘氧饱和石墨烯纳米带的电子特性. 物理学报, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [20] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
计量
  • 文章访问数:  1959
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-18
  • 修回日期:  2023-11-21
  • 上网日期:  2023-12-08
  • 刊出日期:  2024-03-05

/

返回文章
返回