-
氮化镓材料由于优良的电学特性以及耐辐照性能, 其与不同含量AlxGa1–xN 材料组成的电子器件, 有望应用于未来空间电子系统中. 然而目前关于氮化镓位移损伤机理研究多关注于氮化镓材料, 对于 AlxGa1–xN 材料位移损伤研究较少. 本文通过两体碰撞近似理论模拟了 10 keV—300 MeV 质子在不同 Al 元素含量的AlxGa1–xN 材料中的位移损伤机理. 结果表明质子在AlxGa1–xN 材料中产生的非电离能损随质子能量增大而下降, 当质子能量低于 40 MeV时, 非电离能损随着 Al 含量的增大而变大, 当质子能量升高时该趋势相反; 分析由质子导致的初级撞出原子以及非电离能量沉积, 发现不同AlxGa1–xN 材料初级撞出原子能谱虽然相似, 然而 Al 元素含量越高, 由弹性碰撞产生的自身初级撞出原子比例越高; 对于质子在不同深度造成的非电离能量沉积, 弹性碰撞导致的能量沉积在径迹末端最大, 而非弹性碰撞导致的能量沉积在径迹前端均匀分布, 径迹末端减小, 并且低能质子主要是通过弹性碰撞造成非电离能量沉积, 而高能质子恰好相反. 本研究揭示了不同 Al 元素含量的AlxGa1–xN 材料质子位移损伤机理, 为 GaN 器件在空间辐射环境下的应用提供参考依据.Gallium nitride materials, due to their excellent electrical properties and irradiation resistance, are expected to be used in future space electronics systems where electronic devices are composed of different amounts of AlxGa1–xN materials. However, most of their displacement damage studies currently focus on GaN materials, and less on AlxGa1–xN materials themselves. The mechanism of displacement damage induced by 10-keV to 300-MeV protons incident on AlxGa1–xN materials with different Al content is investigated by binary collision approximation method. The results show that the non-ionization energy loss of AlxGa1–xN material decreases with proton energy increasing. When the proton energy is lower than 40 MeV, the non-ionization energy loss becomes larger with the increase of Al content, while the trend is reversed when the proton energy increases. Analyzing the primary knock-on atoms and non-ionizing energy deposition caused by protons, it is found that the primary knock-on atoms’ spectra of different AlxGa1–xN materials are similar, but the higher the content of Al, the higher the proportion of the self primary knock-on atoms generated by elastic collisions is. For the non-ionizing energy deposition produced by protons at different depths, the energy deposition due to elastic collisions is largest at the end of the trajectory, while the energy deposition due to inelastic collisions is uniformly distributed in the front of the trajectory but decreases at the end of the trajectory. This study provides a good insight into the applications of GaN materials and devices in space radiation environment.
-
Keywords:
- AlxGa1–xN /
- proton /
- displacement damage /
- binary collision approximation
[1] 郝跃, 张金风, 张进成, 马晓华, 郑雪峰 2015 科学通报 10 874
Hao Y, Zhang J F, Zhang J C, Ma X H, Zheng X F 2015 Chin. Sci. Bull. 10 874
[2] Zhang Y, Dadgar A, Palacios T 2018 J. Phys. D: Appl. Phys 51 273001
[3] Pearton S, Ren F, Patrick E, Law M, Polyakov A Y 2015 ECS J. Solid State Sci. Technol. 5 Q35Google Scholar
[4] Richard Y, Guzmann D, Smith D 2014 The 4S Symposium Majorca, Spain, May 26–30, 2014 p20141
[5] Valenta V, Loughnane G, Espana C, Latti J, Barnes A, Roux J P, del Rio O, Rubio-Cidre G, Ramirez-Torres M, Serru V, Caille L 2022 17th European Microwave Integrated Circuits Conference (EuMIC) Milan, Italy, September 26–27, 2022 p41
[6] 陈伟, 杨海亮, 郭晓强, 姚志斌, 丁李利, 王祖军, 王晨辉, 王忠明, 丛培天 2017 科学通报 10 978
Chen W, Yang H L, Guo X Q, Yao Z B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 Chin. Sci. Bull. 10 978
[7] Hu X, Choi B K, Barnaby H J, Fleetwood D M, Schrimpf R D, Lee S, Shojah- Ardalan S, Wilkins R, Mishra U K, Dettmer R W 2004 IEEE T. Nucl. Sci. 51 293Google Scholar
[8] Zhu T, Zheng X F, Wang J, Wang M S, Chen K, Wang X H, Du M, Ma P J, Zhang H, Lv L, Cao Y R, Ma X H, Hao Y, 2021 IEEE T. Nucl. Sci. 68 2616Google Scholar
[9] Chen J, Puzyrev Y S, Jiang R, Zhang E X, McCurdy M W, Fleetwood D M, Schrimpf R D, Pantelides S T, Arehart A R, Ringel S A, Saunier P, Lee C 2015 IEEE T. Nucl. Sci. 62 2423Google Scholar
[10] He H, Liao W L, Wang Y Z, Liu W B, Zang H, He C H 2021 Comput. Mater. Sci. 196 110554Google Scholar
[11] Lo C, Chang C, Chu B, Kim H Y, Kim J, Cullen D A, Zhou L, Smith D, Pearton S, Dabiran A, Ren F 2010 J. Vac. Sci. Technol. B 28 L47Google Scholar
[12] Lü L, Ma J G, Cao Y R, Zhang J C, Zhang W, Li L, Xu S R, Ma X H, Ren X T, Hao Y 2011 Microelectron. Reliab. 51 2168Google Scholar
[13] Lyons J L, Wickramaratne D, Van de Walle C G 2021 J. Appl. Phys. 129 111101Google Scholar
[14] Wan P F, Li W Q, Xu X D, Wei Y D, Jiang H, Yang J Q, Shao G J, Lin G, Peng C, Zhang Z G, Li X J 2022 Appl. Phys. Lett. 121 092102Google Scholar
[15] Wang Y Z, Zheng X F, Zhu T, Yue S Z, Pan A L, Xu S R, Li P X, Ma X H, Zhang J C, Guo L X, Hao Y 2023 Appl. Phys. Lett. 122 143501Google Scholar
[16] Weaver B, Martin P, Boos J, Cress C 2012 IEEE T. Nucl. Sci. 59 3077Google Scholar
[17] Zhang Z, Arehart A R, Cinkilic E, Chen J, Zhang E X, Fleetwood D M, Schrimpf R D, McSkimming B, Speck J S, Ringel S A 2013 Appl. Phys. Lett. 103 042102Google Scholar
[18] He H, He C H, Zhang J H, Liao W L, Zang H, Li Y H, Liu W B 2020 Nucl. Eng. Technol. 52 1537Google Scholar
[19] Akkerman A, Barak J, Chadwick M, Levinson J, Murat M, Lifshitz Y 2001 Radiat. Phys. Chem. 62 301Google Scholar
[20] Akkerman A, Barak J, Murat M 2020 IEEE T. Nucl. Sci. 67 1813Google Scholar
[21] Khanna S M, Estan D, Erhardt L S, Houdayer A, Carlone C, Ionascut- Nedelcescu A, Messenger S R, Walters R J, Summers G P, Warner J H, Jun I 2004 IEEE T. Nucl. Sci. 51 2729Google Scholar
[22] Liu L, Mei B, Zheng Z S, Wang L, Bai Y R, Yu Q K, Li P, Zhao H D, Sun Y C, Li B 2023 T. Trans. Nucl. Sci. 70 1885Google Scholar
[23] Nord J, Nordlund K, Keinonen J 2003 Phys. Rev. B 68 184104Google Scholar
[24] 唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康 2016 物理学报 65 024212Google Scholar
Tang D, He C H, Zang H, Li Y H, Xiong C, Zhang J X, Zhang P, Tan P K 2016 Acta Phys. Sin. 65 024212Google Scholar
[25] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar
Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar
[26] Chen N J, Rasch E, Huang D H, Heller E R, Gao F 2018 IEEE T. Nucl. Sci. 65 1108Google Scholar
[27] Keum D, Kim H 2018 ECS J. Solid State Sci. Technol 7 Q159Google Scholar
[28] Hayes M, Auret F, Wu L, Meyer W, Nel J, Legodi M 2003 Physica B 340 421Google Scholar
[29] Jun I, Xapsos M A, Burke E A 2004 IEEE T. Nucl. Sci. 51 3207Google Scholar
[30] Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE T. Nucl. Sci. 50 1924Google Scholar
[31] Lindhard J, Nielsen V, Scharff M, Thomsen P 1963 Kgl. Danske Videnskab., Selskab. Mat. Fys. Medd. 33 1
[32] Robinson M T 1994 J. Nucl. Mater. 216 1Google Scholar
[33] Akkerman A, Barak J 2006 IEEE T. Nucl. Sci. 53 3667Google Scholar
[34] Allison J, Amako K, Apostolakis J, Araujo H, Dubois P A, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R 2006 IEEE T. Nucl. Sci. 53 270Google Scholar
[35] Agostinelli S, Allison J, Amako K a, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G 2003 Nucl. Instrum. Methods Phys. Res. A 506 250Google Scholar
[36] Weller R A, Mendenhall M H, Fleetwood D M 2004 IEEE T. Nucl. Sci. 51 3669Google Scholar
[37] Mendenhall M H, Weller R A 2005 Nucl. Instrum. Methods Phys. Res. B 227 420Google Scholar
[38] Xiao H, Gao F, Zu X T, Weber W J 2009 J. Appl. Phys. 105 123527Google Scholar
[39] Xi J, Liu B, Zhang Y, Weber W J 2018 J. Appl. Phys. 123 045904Google Scholar
[40] Raine M, Jay A, Richard N, Goiffon V, Girard S, Gaillardin M, Paillet P 2016 IEEE T. Nucl. Sci. 64 133Google Scholar
[41] Jay A, Raine M, Richard N, Mousseau N, Goiffon V, Hémeryck A, Magnan P 2016 IEEE T. Nucl. Sci. 64 141Google Scholar
[42] Stoller R E 2000 J. Nucl. Mater. 276 22Google Scholar
[43] Rayaprolu R, Möller S, Linsmeier C, Spellerberg S 2016 Nucl. Mater. Energy 9 29Google Scholar
[44] Wirth B D, Odette G R, Marian J, Ventelon L, Young-Vandersall J A, Zepeda-Ruiz L A 2004 J. Nucl. Mater. 329 103Google Scholar
-
图 7 (a) 150 keV, (b) 10 MeV, (c) 50 MeV, (d) 200 MeV质子在 GaN 材料中沉积的 Tdam (红色) 以及产生的PKA 数目 (蓝色) 随深度分布, 其中实线为弹性碰撞事件, 虚线为非弹性碰撞事件
Fig. 7. Distribution of deposited Tdam (Red) and produced PKAs (Blue) with depth in AlxGa1–xN mate rials irradiated by protons of (a) 150 keV, (b )10 MeV, (c) 50 MeV, (d) 200 MeV. The solid lines and the dashed lines correspond to elastic and inelastic collision events.
-
[1] 郝跃, 张金风, 张进成, 马晓华, 郑雪峰 2015 科学通报 10 874
Hao Y, Zhang J F, Zhang J C, Ma X H, Zheng X F 2015 Chin. Sci. Bull. 10 874
[2] Zhang Y, Dadgar A, Palacios T 2018 J. Phys. D: Appl. Phys 51 273001
[3] Pearton S, Ren F, Patrick E, Law M, Polyakov A Y 2015 ECS J. Solid State Sci. Technol. 5 Q35Google Scholar
[4] Richard Y, Guzmann D, Smith D 2014 The 4S Symposium Majorca, Spain, May 26–30, 2014 p20141
[5] Valenta V, Loughnane G, Espana C, Latti J, Barnes A, Roux J P, del Rio O, Rubio-Cidre G, Ramirez-Torres M, Serru V, Caille L 2022 17th European Microwave Integrated Circuits Conference (EuMIC) Milan, Italy, September 26–27, 2022 p41
[6] 陈伟, 杨海亮, 郭晓强, 姚志斌, 丁李利, 王祖军, 王晨辉, 王忠明, 丛培天 2017 科学通报 10 978
Chen W, Yang H L, Guo X Q, Yao Z B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 Chin. Sci. Bull. 10 978
[7] Hu X, Choi B K, Barnaby H J, Fleetwood D M, Schrimpf R D, Lee S, Shojah- Ardalan S, Wilkins R, Mishra U K, Dettmer R W 2004 IEEE T. Nucl. Sci. 51 293Google Scholar
[8] Zhu T, Zheng X F, Wang J, Wang M S, Chen K, Wang X H, Du M, Ma P J, Zhang H, Lv L, Cao Y R, Ma X H, Hao Y, 2021 IEEE T. Nucl. Sci. 68 2616Google Scholar
[9] Chen J, Puzyrev Y S, Jiang R, Zhang E X, McCurdy M W, Fleetwood D M, Schrimpf R D, Pantelides S T, Arehart A R, Ringel S A, Saunier P, Lee C 2015 IEEE T. Nucl. Sci. 62 2423Google Scholar
[10] He H, Liao W L, Wang Y Z, Liu W B, Zang H, He C H 2021 Comput. Mater. Sci. 196 110554Google Scholar
[11] Lo C, Chang C, Chu B, Kim H Y, Kim J, Cullen D A, Zhou L, Smith D, Pearton S, Dabiran A, Ren F 2010 J. Vac. Sci. Technol. B 28 L47Google Scholar
[12] Lü L, Ma J G, Cao Y R, Zhang J C, Zhang W, Li L, Xu S R, Ma X H, Ren X T, Hao Y 2011 Microelectron. Reliab. 51 2168Google Scholar
[13] Lyons J L, Wickramaratne D, Van de Walle C G 2021 J. Appl. Phys. 129 111101Google Scholar
[14] Wan P F, Li W Q, Xu X D, Wei Y D, Jiang H, Yang J Q, Shao G J, Lin G, Peng C, Zhang Z G, Li X J 2022 Appl. Phys. Lett. 121 092102Google Scholar
[15] Wang Y Z, Zheng X F, Zhu T, Yue S Z, Pan A L, Xu S R, Li P X, Ma X H, Zhang J C, Guo L X, Hao Y 2023 Appl. Phys. Lett. 122 143501Google Scholar
[16] Weaver B, Martin P, Boos J, Cress C 2012 IEEE T. Nucl. Sci. 59 3077Google Scholar
[17] Zhang Z, Arehart A R, Cinkilic E, Chen J, Zhang E X, Fleetwood D M, Schrimpf R D, McSkimming B, Speck J S, Ringel S A 2013 Appl. Phys. Lett. 103 042102Google Scholar
[18] He H, He C H, Zhang J H, Liao W L, Zang H, Li Y H, Liu W B 2020 Nucl. Eng. Technol. 52 1537Google Scholar
[19] Akkerman A, Barak J, Chadwick M, Levinson J, Murat M, Lifshitz Y 2001 Radiat. Phys. Chem. 62 301Google Scholar
[20] Akkerman A, Barak J, Murat M 2020 IEEE T. Nucl. Sci. 67 1813Google Scholar
[21] Khanna S M, Estan D, Erhardt L S, Houdayer A, Carlone C, Ionascut- Nedelcescu A, Messenger S R, Walters R J, Summers G P, Warner J H, Jun I 2004 IEEE T. Nucl. Sci. 51 2729Google Scholar
[22] Liu L, Mei B, Zheng Z S, Wang L, Bai Y R, Yu Q K, Li P, Zhao H D, Sun Y C, Li B 2023 T. Trans. Nucl. Sci. 70 1885Google Scholar
[23] Nord J, Nordlund K, Keinonen J 2003 Phys. Rev. B 68 184104Google Scholar
[24] 唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康 2016 物理学报 65 024212Google Scholar
Tang D, He C H, Zang H, Li Y H, Xiong C, Zhang J X, Zhang P, Tan P K 2016 Acta Phys. Sin. 65 024212Google Scholar
[25] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar
Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar
[26] Chen N J, Rasch E, Huang D H, Heller E R, Gao F 2018 IEEE T. Nucl. Sci. 65 1108Google Scholar
[27] Keum D, Kim H 2018 ECS J. Solid State Sci. Technol 7 Q159Google Scholar
[28] Hayes M, Auret F, Wu L, Meyer W, Nel J, Legodi M 2003 Physica B 340 421Google Scholar
[29] Jun I, Xapsos M A, Burke E A 2004 IEEE T. Nucl. Sci. 51 3207Google Scholar
[30] Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE T. Nucl. Sci. 50 1924Google Scholar
[31] Lindhard J, Nielsen V, Scharff M, Thomsen P 1963 Kgl. Danske Videnskab., Selskab. Mat. Fys. Medd. 33 1
[32] Robinson M T 1994 J. Nucl. Mater. 216 1Google Scholar
[33] Akkerman A, Barak J 2006 IEEE T. Nucl. Sci. 53 3667Google Scholar
[34] Allison J, Amako K, Apostolakis J, Araujo H, Dubois P A, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R 2006 IEEE T. Nucl. Sci. 53 270Google Scholar
[35] Agostinelli S, Allison J, Amako K a, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G 2003 Nucl. Instrum. Methods Phys. Res. A 506 250Google Scholar
[36] Weller R A, Mendenhall M H, Fleetwood D M 2004 IEEE T. Nucl. Sci. 51 3669Google Scholar
[37] Mendenhall M H, Weller R A 2005 Nucl. Instrum. Methods Phys. Res. B 227 420Google Scholar
[38] Xiao H, Gao F, Zu X T, Weber W J 2009 J. Appl. Phys. 105 123527Google Scholar
[39] Xi J, Liu B, Zhang Y, Weber W J 2018 J. Appl. Phys. 123 045904Google Scholar
[40] Raine M, Jay A, Richard N, Goiffon V, Girard S, Gaillardin M, Paillet P 2016 IEEE T. Nucl. Sci. 64 133Google Scholar
[41] Jay A, Raine M, Richard N, Mousseau N, Goiffon V, Hémeryck A, Magnan P 2016 IEEE T. Nucl. Sci. 64 141Google Scholar
[42] Stoller R E 2000 J. Nucl. Mater. 276 22Google Scholar
[43] Rayaprolu R, Möller S, Linsmeier C, Spellerberg S 2016 Nucl. Mater. Energy 9 29Google Scholar
[44] Wirth B D, Odette G R, Marian J, Ventelon L, Young-Vandersall J A, Zepeda-Ruiz L A 2004 J. Nucl. Mater. 329 103Google Scholar
计量
- 文章访问数: 1960
- PDF下载量: 73
- 被引次数: 0