-
20世纪初, 以原子能、半导体、激光、核磁共振、超导和全球卫星定位系统等重大技术发明为标志性成果的第一次量子革命, 促进了物质文明的巨大进步, 从根本上改变了人类的生活方式和社会面貌. 自20世纪90年代以来, 量子调控技术的巨大进步, 使得以量子信息科学为代表的量子科技突飞猛进, 标志着第二次量子革命的兴起. 量子信息科技包括量子通信、量子计算、量子精密测量等方面, 为保障信息传输安全、提高运算速度、提升测量精度等提供了革命性解决方案, 可为国家安全和国民经济高质量发展提供关键支撑. 经过近30年的发展, 我国在量子信息科技领域整体上已经实现了从跟踪、并跑到部分领跑的飞跃, 在量子通信的研究和应用方面处于国际领先地位; 在量子计算方面牢固占据国际第一方阵; 在量子精密测量的多个方向进入国际领先或先进水平. 当前, 需要根据国家战略需求和国际竞争态势, 做好未来5—10年我国在量子信息领域的发展重点研判, 率先建立下一代安全、高效、自主、可控的信息技术体系.In the early decades of the 20th century, the inception of quantum mechanics catalyzed the first quantum revolution, resulting in groundbreaking technological advances, such as nuclear energy, semiconductors, lasers, nuclear magnetic resonance, superconductivity, and global satellite positioning systems. These innovations have promoted significant progress in material civilization, fundamentally changed the way of life and societal landscape of humanity. Since the 1990s, quantum control technology has made significant strides forward, ushering in a rapid evolution of quantum technologies, notably exemplified by quantum information science. This encompasses domains such as quantum communication, quantum computing, and quantum precision measurement, offering paradigm-shifting solutions for enhancing information transmission security, accelerating computational speed, and elevating measurement precision. These advances hold the potential to provide crucial underpinning for national security and the high-quality development of the national economy. The swift progression of quantum information technology heralds the advent of the second quantum revolution. Following nearly three decades of concerted efforts, China’s quantum information technology field as a whole has achieved a leap. Specifically, China presently assumes a prominent international role in both the research and practical application of quantum communication, leading the global domain in quantum computing, and achieving international preeminence or advanced standing across various facets of quantum precision measurement. Presently, it is imperative to conduct a comprehensive assessment of the developmental priorities in the realm of quantum information in China for the forthcoming 5 to 10 years, in alignment with national strategic priorities and the evolving landscape of international competition. This will enable the proactive establishment of next-generation information technology systems that are secure, efficient, autonomous, and controllable.
[1] Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing Bangalore, India, December 4, 1984 pp175–179
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar
[3] Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar
[4] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar
[5] Gisin N 2015 Front. Phys. 10 100307Google Scholar
[6] Pirandola S, Andersen U L, Banchi L, et al. 2020 Adv. Opt. Photonics 12 1012Google Scholar
[7] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wotters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar
[8] D Bouwmeester, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar
[9] Boschi D, Branca S, De Martini F, Hardy L, Popescu S 1998 Phys. Rev. Lett. 80 1121Google Scholar
[10] Zukowski M, Zeilinger A, Horne M A, Ekert A K 1993 Phys Rev. Lett. 71 4287Google Scholar
[11] Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar
[12] Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar
[13] Benioff P 1980 J. Stat. Phys. 22 563Google Scholar
[14] Grover L K 1997 Phys. Rev. Lett. 79 325Google Scholar
[15] Preskill J 2018 Quantum 2 79Google Scholar
[16] Shor P W 1999 Siam Rev. 41 303Google Scholar
[17] Yin J, Cao Y, Li Y H, et al. 2017 Science 356 1140Google Scholar
[18] Liao S K, Cai W Q, Liu W Y, et al. 2017 Nature 549 43Google Scholar
[19] Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70Google Scholar
[20] Liao S K, Cai W Q, Handsteiner J, et al. 2018 Phys. Rev. Lett. 120 030501Google Scholar
[21] Xu P, Ma Y Q, Ren J G, et al. 2019 Science 366 132Google Scholar
[22] Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214Google Scholar
[23] Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar
[24] Madsen L S, Laudenbach F, Askarani M F, et al. 2022 Nature 606 75Google Scholar
[25] Zhong H S, Deng Y H, Qin J, et al. 2021 Phys. Rev. Lett. 127 180502Google Scholar
[26] Deng Y H, Gu Y C, Liu H L, et al. 2023 Phys. Rev. Lett. 131 150601Google Scholar
[27] Deng Y H, Gong S Q, Gu Y C, et al. 2023 Phys. Rev. Lett. 130 190601Google Scholar
[28] Gong M, Wang S, Zha C, et al. 2021 Science 372 948Google Scholar
[29] Wu Y L, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501Google Scholar
[30] Pan F, Chen K, Zhang P 2022 Phys. Rev. Lett. 129 090502Google Scholar
[31] Zhang X, Jiang W J, Deng J F, et al. 2022 Nature 607 468Google Scholar
[32] Cao S R, Wu B J, Chen F S, et al. 2023 Nature 619 738Google Scholar
[33] Yang B, Sun H, Huang C J, Wang H Y, Deng Y, Dai H N, Yuan Z S, Pan J W 2020 Science 369 550Google Scholar
[34] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar
[35] Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271Google Scholar
[36] Yang H, Zhang D C, Liu L, Liu Y X, Nan J, Zhao B, Pan J W 2019 Science 363 261Google Scholar
[37] Yang H, Wang X Y, Su Z, Cao J, Zhang D C, Rui J, Zhao B, Bai C L, Pan J W 2022 Nature 602 229Google Scholar
[38] Yang H, Cao J, Su Z, Rui J, Zhao B, Pan J W 2022 Science 378 1009Google Scholar
[39] Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P, Pan J W 2020 Nature 587 392Google Scholar
[40] Zhou Z Y, Su G X, Halimeh J C, Ott R, Sun H, Hauke P, Yang B, Yuan Z S, Berges J, Pan J W 2022 Science 377 311Google Scholar
[41] Li X, Luo X, Wang S, Xie K, Liu X P, Hu H, Chen Y A, Yao X C, Pan J W 2022 Science 375 528Google Scholar
[42] Zhang X T, Chen Y, Wu Z M, Wang J, Fan J J, Deng S J, Wu H B 2021 Science 373 1359Google Scholar
[43] Huang Q, Yao R X, Liang L B, Wang S, Zheng Q P, Li D P, Xiong W, Zhou X J, Chen W L, Chen X Z, Hu J Z 2021 Phys. Rev. Lett. 127 200601Google Scholar
[44] Jin S J, Zhang W J, Guo X X, Chen X Z, Zhou X J, Li X P 2021 Phys. Rev. Lett. 126 035301Google Scholar
[45] Zhang D F, Gao T Y, Zou P, Kong L R, Li R Z, Shen X, Chen X L, Peng S G, Zhan M S, Pu H, Jiang K J 2019 Phys. Rev. Lett. 122 110402Google Scholar
[46] Cui Y, Shen C Y, Deng M, Dong S, Chen C, Lü R, Gao B, Tey M K, You L 2017 Phys. Rev. Lett. 119 203402Google Scholar
[47] Deng S J, Diao P P, Li F, Yu Q L, Yu S, Wu H B 2018 Phys. Rev. Lett. 120 125301Google Scholar
[48] Deng S J, Shi Z Y, Diao P P, Yu Q L, Zhai H, Qi R, Wu H B 2016 Science 353 371Google Scholar
[49] Xie D Z, Deng T S, Xiao T, Gou W, Chen T, Yi W, Yan B 2020 Phys. Rev. Lett. 124 050502Google Scholar
[50] Wang P, Luan C, Qiao M, Um M, Zhang J, Wang Y, Yuan X, Gu M, Zhang J, Kim K 2021 Nat. Commun. 12 233Google Scholar
[51] Mei Q X, Li B W, Wu Y K, Cai M L, Wang Y, Yao L, Zhou Z C, Duan L M 2022 Phys. Rev. Lett. 128 160504Google Scholar
[52] Li B W, Mei Q X, Wu Y K, Cai M L, Wang Y, Yao L, Zhou Z C, Duan L M 2022 Phys Rev. Lett. 129 140501Google Scholar
[53] Yang H X, Ma J Y, Wu Y K, Wang Y, Cao M M, Guo W X, Huang Y Y, Feng L, Zhou Z C, Duan L M 2022 Nat. Phys. 18 1058Google Scholar
[54] Zhang Q, Guo Y H, Ji W T, Wang M Q, Yin J, Kong F, Lin Y H, Yin C M, Shi F Z, Wang Y, Du J F 2021 Nat. Commun. 12 1529Google Scholar
[55] Wang M Q, Sun H Y, Ye X Y, Yu P, Liu H Y, Zhou J W, Wang P F, Shi F Z, Wang Y, Du J F 2022 Sci. Adv. 8 eabn9573Google Scholar
[56] Beullens W 2022 Annual International Cryptology Conference Santa Barbara, CA, USA, August 15–18, 2022 p464
[57] Castryck W, Decru T 2023 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques Lyon, France, April 23–27, 2023 pp423–447
[58] Lu B K, Sun Z, Yang T, et al. 2022 Chin. Phys. Lett. 39 080601Google Scholar
[59] Zhang A, Xiong Z X, Chen X T, Jiang Y Y, Wang J Q, Tian C C, Zhu Q, Wang B, Xiong D Z, He L X, Ma L S, Lü B L 2022 Metrologia 59 065009Google Scholar
[60] Lu X T, Guo F, Wang Y B, Xu Q F, Zhou C H, Xia J J, Wu W J, Chang H 2023 Metrologia 60 015008Google Scholar
[61] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J 2019 Nat. Photon. 13 714Google Scholar
[62] Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A, Ye J 2022 Nature 602 420Google Scholar
[63] Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H 2020 Nat. Photon. 14 411Google Scholar
[64] Ohmae N, Takamoto M, Takahashi Y, et al. 2021 Advanced Quantum Technologies 4 2100015
[65] Shen Q, Guan J Y, Ren J G, et al. 2022 Nature 610 661Google Scholar
[66] Fan W F, Quan W, Liu F, et al. 2019 Chinese Phys. B 28 110701Google Scholar
[67] Yang Y H, Chen D Y, Jin W, Quan W, Liu F, Fang J C 2019 IEEE Access 7 148176Google Scholar
[68] Xie H T, Chen B, Long J B, Xue C, Chen L K, Chen S 2020 Chin. Phys. B 29 093701Google Scholar
[69] Chen B, Long J B, Xie H T, Li C Y, Chen L K, Jiang B N, Chen S 2020 Chin. Opt. Lett. 18 090201Google Scholar
[70] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar
Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar
[71] Xie T Y, Zhao Z Y, Kong X, Ma W C, Wang M Q, Ye X Y, Yu P, Yang Z P, Xu S Y, Wang P F, Wang Y, Shi F Z, Du J F 2021 Sci. Adv. 7 eabg9204Google Scholar
[72] Wei K, Zhao T, Fang X J, Xu Z T, Liu C, Cao Q, Wickenbrock A, Hu Y H, Ji W, Fang J C, Budker D 2023 Phys. Rev. Lett. 130 063201Google Scholar
[73] Li Z P, Ye J T, Huang X, Jiang P Y, Cao Y, Hong Y, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F, Pan J W 2021 Optica 8 344Google Scholar
[74] Wang B, Zheng M Y, Han J J, Huang X, Xie X P, Xu F, Zhang Q, Pan J W 2021 Phys. Rev. Lett. 127 053602Google Scholar
[75] Xia T Y, Sun W W, Ebser S, Jiang W, Yang G M, Zhu H M, Fu Y C, Huang F, Ming G D, Xia T, Lu Z T 2023 Nat. Phys. 19 904Google Scholar
[76] Xu J Y, Zhu X, Tan S J, Zhang Y, Li B, Tian Y Z, Shan H, Cui X F, Zhao A D, Dong Z C, Yang J L, Luo Y, Wang B, Hou J G 2021 Science 371 818Google Scholar
[77] H.R.6227–National Quantum Initiative Act, Smith L https://www.congress.gov/bill/115th-congress/house-bill/6227/text [2018-12-21
[78] H.R.4346–Chips and Science Act, Ryan T https://www.congress.gov/bill/117th-congress/house-bill/4346 [2021-07-01
[79] Quantum Technologies Flagship, European Commission https://digital-strategy.ec.europa.eu/en/policies/quantum-technologies-flagship [2021-10-29
[80] Space-based Secure Connectivity Initiative, European Commission https://ec.europa.eu/info/law/better-regulation/have-your-say/initiahtives/13189-EU-space-policy-space-based-secure-connectivity-initiative_en [2021-08-26
[81] Handlungskonzept Quantentechnologien, der Bundesregierung https://qbn.world/wp-content/uploads/2023/04/Action-Plan-Quantum-Technologies-by-German-Government-2023-2026.pdf [2023-04-26
[82] French Research at the Heart of the Quantum Plan, Felix S https://news.cnrs.fr/articles/french-research-at-the-heart-of-the-quantum-plan [2021-02-17
[83] National Quantum Strategy, GOV. UK https://www.gov.uk/government/publications/national-quantum-strategy/national-quantum-strategy-accessible-webpage [2023-12-14
[84] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar
[85] Zhao Y W, Ye Y S, Huang H L, et al. 2022 Phys. Rev. Lett. 129 030501Google Scholar
[86] Ni Z C, Li S, Deng X W, Cai Y Y, Zhang L B, Wang W T, Yang Z B, Yu H F, Yan F, Liu S, Zou C L, Sun L Y, Zheng S B, Xu Y, Yu D P 2023 Nature 616 56Google Scholar
-
[1] Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing Bangalore, India, December 4, 1984 pp175–179
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar
[3] Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar
[4] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar
[5] Gisin N 2015 Front. Phys. 10 100307Google Scholar
[6] Pirandola S, Andersen U L, Banchi L, et al. 2020 Adv. Opt. Photonics 12 1012Google Scholar
[7] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wotters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar
[8] D Bouwmeester, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar
[9] Boschi D, Branca S, De Martini F, Hardy L, Popescu S 1998 Phys. Rev. Lett. 80 1121Google Scholar
[10] Zukowski M, Zeilinger A, Horne M A, Ekert A K 1993 Phys Rev. Lett. 71 4287Google Scholar
[11] Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar
[12] Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar
[13] Benioff P 1980 J. Stat. Phys. 22 563Google Scholar
[14] Grover L K 1997 Phys. Rev. Lett. 79 325Google Scholar
[15] Preskill J 2018 Quantum 2 79Google Scholar
[16] Shor P W 1999 Siam Rev. 41 303Google Scholar
[17] Yin J, Cao Y, Li Y H, et al. 2017 Science 356 1140Google Scholar
[18] Liao S K, Cai W Q, Liu W Y, et al. 2017 Nature 549 43Google Scholar
[19] Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70Google Scholar
[20] Liao S K, Cai W Q, Handsteiner J, et al. 2018 Phys. Rev. Lett. 120 030501Google Scholar
[21] Xu P, Ma Y Q, Ren J G, et al. 2019 Science 366 132Google Scholar
[22] Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214Google Scholar
[23] Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar
[24] Madsen L S, Laudenbach F, Askarani M F, et al. 2022 Nature 606 75Google Scholar
[25] Zhong H S, Deng Y H, Qin J, et al. 2021 Phys. Rev. Lett. 127 180502Google Scholar
[26] Deng Y H, Gu Y C, Liu H L, et al. 2023 Phys. Rev. Lett. 131 150601Google Scholar
[27] Deng Y H, Gong S Q, Gu Y C, et al. 2023 Phys. Rev. Lett. 130 190601Google Scholar
[28] Gong M, Wang S, Zha C, et al. 2021 Science 372 948Google Scholar
[29] Wu Y L, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501Google Scholar
[30] Pan F, Chen K, Zhang P 2022 Phys. Rev. Lett. 129 090502Google Scholar
[31] Zhang X, Jiang W J, Deng J F, et al. 2022 Nature 607 468Google Scholar
[32] Cao S R, Wu B J, Chen F S, et al. 2023 Nature 619 738Google Scholar
[33] Yang B, Sun H, Huang C J, Wang H Y, Deng Y, Dai H N, Yuan Z S, Pan J W 2020 Science 369 550Google Scholar
[34] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar
[35] Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271Google Scholar
[36] Yang H, Zhang D C, Liu L, Liu Y X, Nan J, Zhao B, Pan J W 2019 Science 363 261Google Scholar
[37] Yang H, Wang X Y, Su Z, Cao J, Zhang D C, Rui J, Zhao B, Bai C L, Pan J W 2022 Nature 602 229Google Scholar
[38] Yang H, Cao J, Su Z, Rui J, Zhao B, Pan J W 2022 Science 378 1009Google Scholar
[39] Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P, Pan J W 2020 Nature 587 392Google Scholar
[40] Zhou Z Y, Su G X, Halimeh J C, Ott R, Sun H, Hauke P, Yang B, Yuan Z S, Berges J, Pan J W 2022 Science 377 311Google Scholar
[41] Li X, Luo X, Wang S, Xie K, Liu X P, Hu H, Chen Y A, Yao X C, Pan J W 2022 Science 375 528Google Scholar
[42] Zhang X T, Chen Y, Wu Z M, Wang J, Fan J J, Deng S J, Wu H B 2021 Science 373 1359Google Scholar
[43] Huang Q, Yao R X, Liang L B, Wang S, Zheng Q P, Li D P, Xiong W, Zhou X J, Chen W L, Chen X Z, Hu J Z 2021 Phys. Rev. Lett. 127 200601Google Scholar
[44] Jin S J, Zhang W J, Guo X X, Chen X Z, Zhou X J, Li X P 2021 Phys. Rev. Lett. 126 035301Google Scholar
[45] Zhang D F, Gao T Y, Zou P, Kong L R, Li R Z, Shen X, Chen X L, Peng S G, Zhan M S, Pu H, Jiang K J 2019 Phys. Rev. Lett. 122 110402Google Scholar
[46] Cui Y, Shen C Y, Deng M, Dong S, Chen C, Lü R, Gao B, Tey M K, You L 2017 Phys. Rev. Lett. 119 203402Google Scholar
[47] Deng S J, Diao P P, Li F, Yu Q L, Yu S, Wu H B 2018 Phys. Rev. Lett. 120 125301Google Scholar
[48] Deng S J, Shi Z Y, Diao P P, Yu Q L, Zhai H, Qi R, Wu H B 2016 Science 353 371Google Scholar
[49] Xie D Z, Deng T S, Xiao T, Gou W, Chen T, Yi W, Yan B 2020 Phys. Rev. Lett. 124 050502Google Scholar
[50] Wang P, Luan C, Qiao M, Um M, Zhang J, Wang Y, Yuan X, Gu M, Zhang J, Kim K 2021 Nat. Commun. 12 233Google Scholar
[51] Mei Q X, Li B W, Wu Y K, Cai M L, Wang Y, Yao L, Zhou Z C, Duan L M 2022 Phys. Rev. Lett. 128 160504Google Scholar
[52] Li B W, Mei Q X, Wu Y K, Cai M L, Wang Y, Yao L, Zhou Z C, Duan L M 2022 Phys Rev. Lett. 129 140501Google Scholar
[53] Yang H X, Ma J Y, Wu Y K, Wang Y, Cao M M, Guo W X, Huang Y Y, Feng L, Zhou Z C, Duan L M 2022 Nat. Phys. 18 1058Google Scholar
[54] Zhang Q, Guo Y H, Ji W T, Wang M Q, Yin J, Kong F, Lin Y H, Yin C M, Shi F Z, Wang Y, Du J F 2021 Nat. Commun. 12 1529Google Scholar
[55] Wang M Q, Sun H Y, Ye X Y, Yu P, Liu H Y, Zhou J W, Wang P F, Shi F Z, Wang Y, Du J F 2022 Sci. Adv. 8 eabn9573Google Scholar
[56] Beullens W 2022 Annual International Cryptology Conference Santa Barbara, CA, USA, August 15–18, 2022 p464
[57] Castryck W, Decru T 2023 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques Lyon, France, April 23–27, 2023 pp423–447
[58] Lu B K, Sun Z, Yang T, et al. 2022 Chin. Phys. Lett. 39 080601Google Scholar
[59] Zhang A, Xiong Z X, Chen X T, Jiang Y Y, Wang J Q, Tian C C, Zhu Q, Wang B, Xiong D Z, He L X, Ma L S, Lü B L 2022 Metrologia 59 065009Google Scholar
[60] Lu X T, Guo F, Wang Y B, Xu Q F, Zhou C H, Xia J J, Wu W J, Chang H 2023 Metrologia 60 015008Google Scholar
[61] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J 2019 Nat. Photon. 13 714Google Scholar
[62] Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A, Ye J 2022 Nature 602 420Google Scholar
[63] Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H 2020 Nat. Photon. 14 411Google Scholar
[64] Ohmae N, Takamoto M, Takahashi Y, et al. 2021 Advanced Quantum Technologies 4 2100015
[65] Shen Q, Guan J Y, Ren J G, et al. 2022 Nature 610 661Google Scholar
[66] Fan W F, Quan W, Liu F, et al. 2019 Chinese Phys. B 28 110701Google Scholar
[67] Yang Y H, Chen D Y, Jin W, Quan W, Liu F, Fang J C 2019 IEEE Access 7 148176Google Scholar
[68] Xie H T, Chen B, Long J B, Xue C, Chen L K, Chen S 2020 Chin. Phys. B 29 093701Google Scholar
[69] Chen B, Long J B, Xie H T, Li C Y, Chen L K, Jiang B N, Chen S 2020 Chin. Opt. Lett. 18 090201Google Scholar
[70] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar
Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar
[71] Xie T Y, Zhao Z Y, Kong X, Ma W C, Wang M Q, Ye X Y, Yu P, Yang Z P, Xu S Y, Wang P F, Wang Y, Shi F Z, Du J F 2021 Sci. Adv. 7 eabg9204Google Scholar
[72] Wei K, Zhao T, Fang X J, Xu Z T, Liu C, Cao Q, Wickenbrock A, Hu Y H, Ji W, Fang J C, Budker D 2023 Phys. Rev. Lett. 130 063201Google Scholar
[73] Li Z P, Ye J T, Huang X, Jiang P Y, Cao Y, Hong Y, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F, Pan J W 2021 Optica 8 344Google Scholar
[74] Wang B, Zheng M Y, Han J J, Huang X, Xie X P, Xu F, Zhang Q, Pan J W 2021 Phys. Rev. Lett. 127 053602Google Scholar
[75] Xia T Y, Sun W W, Ebser S, Jiang W, Yang G M, Zhu H M, Fu Y C, Huang F, Ming G D, Xia T, Lu Z T 2023 Nat. Phys. 19 904Google Scholar
[76] Xu J Y, Zhu X, Tan S J, Zhang Y, Li B, Tian Y Z, Shan H, Cui X F, Zhao A D, Dong Z C, Yang J L, Luo Y, Wang B, Hou J G 2021 Science 371 818Google Scholar
[77] H.R.6227–National Quantum Initiative Act, Smith L https://www.congress.gov/bill/115th-congress/house-bill/6227/text [2018-12-21
[78] H.R.4346–Chips and Science Act, Ryan T https://www.congress.gov/bill/117th-congress/house-bill/4346 [2021-07-01
[79] Quantum Technologies Flagship, European Commission https://digital-strategy.ec.europa.eu/en/policies/quantum-technologies-flagship [2021-10-29
[80] Space-based Secure Connectivity Initiative, European Commission https://ec.europa.eu/info/law/better-regulation/have-your-say/initiahtives/13189-EU-space-policy-space-based-secure-connectivity-initiative_en [2021-08-26
[81] Handlungskonzept Quantentechnologien, der Bundesregierung https://qbn.world/wp-content/uploads/2023/04/Action-Plan-Quantum-Technologies-by-German-Government-2023-2026.pdf [2023-04-26
[82] French Research at the Heart of the Quantum Plan, Felix S https://news.cnrs.fr/articles/french-research-at-the-heart-of-the-quantum-plan [2021-02-17
[83] National Quantum Strategy, GOV. UK https://www.gov.uk/government/publications/national-quantum-strategy/national-quantum-strategy-accessible-webpage [2023-12-14
[84] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar
[85] Zhao Y W, Ye Y S, Huang H L, et al. 2022 Phys. Rev. Lett. 129 030501Google Scholar
[86] Ni Z C, Li S, Deng X W, Cai Y Y, Zhang L B, Wang W T, Yang Z B, Yu H F, Yan F, Liu S, Zou C L, Sun L Y, Zheng S B, Xu Y, Yu D P 2023 Nature 616 56Google Scholar
计量
- 文章访问数: 10619
- PDF下载量: 780
- 被引次数: 0