搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚稳相钙钛矿稀土镍酸盐薄膜材料的可控生长与电子相变性质

周轩弛 焦勇杰

引用本文:
Citation:

亚稳相钙钛矿稀土镍酸盐薄膜材料的可控生长与电子相变性质

周轩弛, 焦勇杰
cstr: 32037.14.aps.73.20240584

Controllable growth and electronic phase transitions for metastable perovskite rare-earth nickelate films

Zhou Xuan-Chi, Jiao Yong-Jie
cstr: 32037.14.aps.73.20240584
PDF
HTML
导出引用
  • 稀土镍酸盐(ReNiO3, Re为镧系稀土元素)由特征温度场、氢化、临界电场及应力场等多物理参量引发的多重电子相变及物性突变引起了凝聚态物理和材料科学领域的广泛关注, 在突变式敏感电阻元器件、人工智能、能量转换及弱电场传感等领域展现出可观的应用前景. 然而, ReNiO3材料本征的热力学亚稳性仍制约其在关联电子器件中的实际应用. 本文利用激光分子束外延法制备出原子级平整的亚稳态ReNiO3 (Re = Nd, Sm及Nd1–xSmx)薄膜材料, 阐明高氧压原位退火在稳定其Ni3+扭曲钙钛矿结构中的关键作用, 结合同步辐 射和X射线光电子能谱等先进表征手段厘清ReNiO3薄膜材料的化学环境及电子结构, 并揭示出其各向异性的电子相变功能特性. 本文为制备原子级平整的亚稳态钙钛矿稀土镍酸盐薄膜材料提供了方向, 并引入全新的功能调控自由度——晶体学各向异性, 为进一步探索稀土镍酸盐材料体系中的新型电子相和功能特性奠定基础.
    The multiple electronic phase transition achieved in the metastable perovskite (ReNiO3, where Re denotes a lanthanide rare-earth element) by using critical temperature, hydrogenation, electrical field and interfacial strain has attracted considerable attention in condensed matter physics and materials science, making it promising applications in the critical temperature thermistor, artificial intelligence, energy conversion and weak electric field sensing. Nevertheless, the above abundant applications are still bottlenecked by the intrinsically thermodynamic metastability related to ReNiO3. Herein, we synthesize the atomic-level flat ReNiO3 film material with thermodynamic metastability using laser molecular beam epitaxy (LMBE) that exhibits excellent thermally-driven electronic phase transitions. Notably, the interfacial heterogeneous nucleation of ReNiO3 film can be triggered by the template effect of (001)-oriented LaAlO3 substrates, owing to the similar lattice constants between LaAlO3 substrate and ReNiO3 film. In addition, we elucidate the key role of in situ annealing under oxygen-enriched atmosphere in stabilizing the distorted perovskite structure related to ReNiO3. Apart from the depositing process related to LMBE, the ReNiO3 with heavy rare-earth composition exhibits a more distorted NiO6 octahedron and a higher Gibbs free energy that is rather difficult to synthesize by using physical vacuum deposition. As a representative case, the in situ annealing-assisted LMBE process cannot be utilized to deposit the SmNiO3 film, in which the impurity peaks related to Re2O3 and NiO are observed in its XRD spectra. With the assistance of X-ray photoelectron spectraoscopy and near-edge X-ray absorption fine structure, the valence state of nickel for ReNiO3 is found to be +3, and the $t_{2{\mathrm{g}}}^6e_{\mathrm{g}}^1 $ configuration is observed. Considering the highly tunable electronic orbital configuration of ReNiO3 related to the NiO6 octahedron, co-occupying the A-site of perovskite structure with Nd and Sm elements regulates the transition temperature (TMIT) for ReNiO3 within a broad temperature range. Furthermore, we demonstrate the anisotropy in the electronic phase transitions for Nd1–xSmxNiO3, in which case the TMIT achieved in the Nd1–xSmxNiO3/LaAlO3 (111) heterostructure exceeds the one deposited on the (001)-oriented LaAlO3 substrate. The presently observed anisotropy in the electrical transportation for Nd1–xSmxNiO3 film material is related to the anisotropic in-plane NiO6 octahedron configuration triggered by differently oriented LaAlO3 substrates. The present work is expected to introduce a new degree of freedom to regulate the electronic phase transition, explore new electronic phase in ReNiO3 material system, and pave the way for growing atomic-level flat ReNiO3 film materials with expected electronic phase transitions.
      通信作者: 周轩弛, xuanchizhou@sxnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52401240, 12174237)和天津市光电检测技术与系统重点实验室开放课题(批准号: 2024LODTS102)资助的课题.
      Corresponding author: Zhou Xuan-Chi, xuanchizhou@sxnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52401240, 12174237) and the Open Project of Tianjin Key Laboratory of Optoelectronic Detection Technology and System, China (Grant No. 2024LODTS102).
    [1]

    Ding X, Tam C C, Sui X L, Zhao Y, Xu M H, Choi J, Leng H Q, Zhang J, Wu M, Xiao H Y, Zu X T, Garcia-Fernandez M, Agrestini S, Wu X Q, Wang Q Y, Gao P, Li S A, Huang B, Zhou K J, Qiao L 2023 Nature 615 50Google Scholar

    [2]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S 2013 Science 339 1402Google Scholar

    [3]

    Vistoli L, Wang W B, Sander A, Zhu Q X, Casals B, Cichelero R, Barthélémy A, Fusil S, Herranz G, Valencia S, Abrudan R, Weschke E, Nakazawa K, Kohno H, Santamaria J, Wu W D, Garcia V, Bibes M 2019 Nat. Phys. 15 67Google Scholar

    [4]

    周轩弛, 李海帆 2024 物理学报 73 117102Google Scholar

    Zhou X C, Li H F 2024 Acta Phys. Sin. 73 117102Google Scholar

    [5]

    Zhou X C, Shang Y L, Gu Z J, Jiang G Z, Ozawa T, Mao W, Fukutani K, Matsuzaki H, Jiang Y, Chen N F, Chen J K 2024 Appl. Phys. Lett. 124 082103Google Scholar

    [6]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y C, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [7]

    Bisogni V, Catalano S, Green R J, Gibert M, Scherwitzl R, Huang Y B, Strocov V N, Zubko P, Balandeh S, Triscone J M, Sawatzky G, Schmitt T 2016 Nat. Commun. 7 13017Google Scholar

    [8]

    Domínguez C, Georgescu A B, Mundet B, Zhang Y J, Fowlie J, Mercy A, Waelchli A, Catalano S, Alexander D T L, Ghosez P, Georges A, Millis A J, Gibert M, Triscone J M 2020 Nat. Mater. 19 1182Google Scholar

    [9]

    Song Q, Doyle S, Pan G A, El Baggari I, Segedin D F, Carrizales D C, Nordlander J, Tzschaschel C, Ehrets J R, Hasan Z, El-Sherif H, Krishna J, Hanson C, LaBollita H, Bostwick A, Jozwiak C, Rotenberg E, Xu S Y, Lanzara A, N'Diaye A T, Heikes C A, Liu Y H, Paik H, Brooks C M, Pamuk B, Heron J T, Shafer P, Ratcliff W D, Botana A S, Moreschini L, Mundy J A 2023 Nat. Phys. 19 522Google Scholar

    [10]

    Zhang H T, Park T J, Islam A, Tran D S J, Manna S, Wang Q, Mondal S, Yu H M, Banik S, Cheng S B, Zhou H, Gamage S, Mahapatra S, Zhu Y M, Abate Y, Jiang N, Sankaranarayanan S, Sengupta A, Teuscher C, Ramanathan S 2022 Science 375 533Google Scholar

    [11]

    Shi J, Zhou Y, Ramanathan S 2014 Nat. Commun. 5 4860Google Scholar

    [12]

    Shi J, Ha S D, Zhou Y, Schoofs F, Ramanathan S 2013 Nat. Commun. 4 2676Google Scholar

    [13]

    Scherwitzl R, Zubko P, Lezama I G, Ono S, Morpurgo A F, Catalan G, Triscone J M 2010 Adv. Mater. 22 5517Google Scholar

    [14]

    Phillips P J, Rui X, Georgescu A B, Disa A S, Longo P, Okunishi E, Walker F, Ahn C H, Ismail-Beigi S, Klie R F 2017 Phys. Rev. B 95 205131Google Scholar

    [15]

    Zhao W Y, Ma Z W, Shi Y, Fu R J, Wang K, Sui Y M, Xiao G J, Zou B 2023 Cell Rep. Phys. Sci. 4 101663Google Scholar

    [16]

    Zhao D L, Cong M, Liu Z, Ma Z W, Wang K, Xiao G J, Zou B 2023 Cell Rep. Phys. Sci. 4 101445Google Scholar

    [17]

    Shi Y, Zhao W Y, Ma Z W, Xiao G J, Zou B 2021 Chem. Sci. 12 14711Google Scholar

    [18]

    Zhou X C, Li H F, Jiao Y J, Zhou G W, Ji H H, Jiang Y, Xu X H 2024 Adv. Funct. Mater. 34 2316536Google Scholar

    [19]

    Zhang H T, Park T J, Zaluzhnyy I A, Wang Q, Wadekar S N, Manna S, Andrawis R, Sprau P O, Sun Y F, Zhang Z, Huang C Z, Zhou H, Zhang Z, Narayanan B, Srinivasan G, Hua N, Nazaretski E, Huang X J, Yan H F, Ge M Y, Chu Y S, Cherukara M J, Holt M V, Krishnamurthy M, Shpyrko O G, Sankaranarayanan S, Frano A, Roy K, Ramanathan S 2020 Nat. Commun. 11 2245Google Scholar

    [20]

    Zhang Z, Schwanz D, Narayanan B, Kotiuga M, Dura J A, Cherukara M, Zhou H, Freeland J W, Li J R, Sutarto R, He F Z, Wu C Z, Zhu J X, Sun Y F, Ramadoss K, Nonnenmann S S, Yu N F, Comin R, Rabe K M, Sankaranarayanan S, Ramanathan S 2018 Nature 553 68Google Scholar

    [21]

    Zhou Y, Guan X F, Zhou H, Ramadoss K, Adam S, Liu H J, Lee S, Shi J, Tsuchiya M, Fong D D, Ramanathan S 2016 Nature 534 231Google Scholar

    [22]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337Google Scholar

    [23]

    Mattoni G, Zubko P, Maccherozzi F, van der Torren A J H, Boltje D B, Hadjimichael M, Manca N, Catalano S, Gibert M, Liu Y, Aarts J, Triscone J M, Dhesi S S, Caviglia A D 2016 Nat. Commun. 7 13141Google Scholar

    [24]

    Zhou X C, Li H F, Meng F Q, Mao W, Wang J O, Jiang Y, Fukutani K, Wilde M, Fugetsu B, Sakata I, Chen N F, Chen J K 2022 J. Phys. Chem. Lett. 13 8078Google Scholar

    [25]

    Zhou X C, Cui Y C, Shang Y L, Li H F, Wang J O, Meng Y, Xu X, Jiang Y, Chen N F, Chen J K 2023 J. Phys. Chem. C 127 2639Google Scholar

    [26]

    Zhou X C, Li H F, Shang Y L, Meng F Q, Li Z A, Meng K K, Wu Y, Xu X G, Jiang Y, Chen N F, Chen J K 2023 Phys. Chem. Chem. Phys. 25 21908Google Scholar

    [27]

    Zhou X C, Jiao Y J, Li H F 2024 Appl. Phys. Lett. 125 032103Google Scholar

    [28]

    Schiffer P, Ramirez A P, Bao W, Cheong S W 1995 Phys. Rev. Lett. 75 3336Google Scholar

    [29]

    Catalano S, Gibert M, Fowlie J, Iñiguez J, Triscone J M, Kreisel J 2018 Rep. Prog. Phys. 81 046501Google Scholar

    [30]

    Nikulin I V, Novojilov M A, Kaul A R, Mudretsova S N, Kondrashov S V 2004 Mater. Res. Bull. 39 775Google Scholar

    [31]

    Escote M T, da Silva A M L, Matos J R, Jardim R F 2000 J. Solid State Chem. 151 298Google Scholar

    [32]

    Chen X G, Zhang X, Koten M A, Chen H H, Xiao Z Y, Zhang L, Shield J E, Dowben P A, Hong X 2017 Adv. Mater. 29 1701385Google Scholar

    [33]

    Hadjimichael M, Mundet B, Domínguez C, Waelchli A, De Luca G, Spring J, Jöhr S, Walker S M, Piamonteze C, Alexander D T L, Triscone J M, Gibert M 2023 Adv. Electron. Mater. 9 2201182Google Scholar

    [34]

    Demazeau G, Marbeuf A, Pouchard M, Hagenmuller P 1971 J. Solid State Chem. 3 582Google Scholar

    [35]

    Chen J K, Li Z A, Dong H L, Xu J N, Wang V, Feng Z J, Chen Z Q, Chen B, Chen N F, Mao H K 2020 Adv. Funct. Mater. 30 2000987Google Scholar

    [36]

    Chen J K, Hu H Y, Wang J O, Yajima T, Ge B H, Ke X Y, Dong H L, Jiang Y, Chen N F 2019 Mater. Horiz. 6 788Google Scholar

    [37]

    Chen J H, Chen J K, Ren Z Y, Zhao D D, Wang M X, Miao J, Xu X G, Jiang Y, Chen N F 2021 J. Rare Earths 39 174Google Scholar

    [38]

    Zhou X C, Wu Y, Yan F B, Zhang T Z, Ke X Y, Meng K K, Xu X G, Li Z P, Miao J, Chen J K, Jiang Y 2021 Ceram. Int. 47 25574Google Scholar

    [39]

    Catalan G 2008 Phase Transit. 81 729Google Scholar

    [40]

    Zhou X C, Mao W, Cui Y C, Zhang H, Liu Q, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2023 Adv. Funct. Mater. 33 2303416Google Scholar

    [41]

    Zhong J, Li Z, Zheng Y Q, Jiang P H, Zhang F, Zhang T, Cui Y C, Zhong Z C, Chen N F, Chen J K 2023 J. Am. Ceram. Soc. 106 5067Google Scholar

    [42]

    Chen J K, Hu H Y, Meng F Q, Yajima T, Yang L X, Ge B H, Ke X Y, Wang J O, Jiang Y, Chen N F 2020 Matter 2 1296Google Scholar

  • 图 1  稀土镍酸盐(ReNiO3)的电子相变特性 (a) ReNiO3的晶体结构及 ReNiO3绝缘相的电子结构和扭曲的NiO6八面体; (b) ReNiO3TMIT随其扭曲钙钛矿结构容忍因子的变化; (c) 温度为1100 K时ReNiO3的吉布斯自由能(ΔG)随稀土离子半径的变化

    Fig. 1.  Electronic phase transitions for rare-earth nickelates (ReNiO3): (a) Crystal structure for ReNiO3 and the electronic structure and distorted NiO6 octahedron for the insulating phase of ReNiO3; (b) transition temperature (TMIT) for ReNiO3 plotted as a function of the tolerance factor of distorted perovskite structure; (c) Gibbs free energy (ΔG) for ReNiO3 plotted as a function of the ionic radius of Re elements at 1100 K.

    图 2  揭示高氧压原位退火在沉积ReNiO3薄膜中的关键作用 (a) 未经原位退火、经原位退火及放置空气中4个月后NdNiO3的X射线衍射图谱(XRD); (b) 经原位退火NdNiO3薄膜的原子力显微镜(AFM)图; (c) 原位退火、放置于空气中4个月及未经原位退火NdNiO3的阻温特性曲线(ρ-T曲线); (d) 原位退火及未经原位退火NdNiO3的电阻温度系数与温度的变化关系图(TCR -T曲线), 插图为本工作制备的NdNiO3薄膜的归一化特性曲线与文献[36]的对比图

    Fig. 2.  Revealing the critical role of in situ annealing upon high oxygen pressure in depositing the ReNiO3 film material: (a) X-ray diffraction for the as-deposited NdNiO3 film before and after in-situ annealing and exposed to the air for 4 months; (b) image of atomic force microscope for NdNiO3 film upon in-situ annealing; (c) resistance temperature characteristic curves (ρ-T tendency) of NdNiO3 after in-situ annealing, 4 months in air, and without in-situ annealing; (d) temperature dependance of the temperature coefficient of resistance (TCR) for the NdNiO3 film before and after in-situ annealing, while the normalized ρ-T tendency for as-deposited NdNiO3 film as compared for the previously reported one were shown in the inset [36].

    图 3  所制备NdNiO3薄膜的X射线光电子能谱(XPS) (a) Ni-2p核心能级, (b) O-1s核心能级. 所制备NdNiO3薄膜的同步辐射X射线近边吸收谱(NEXAFS) (c) Ni-L边, (d) O-K边

    Fig. 3.  X-ray photoelectron spectroscopy (XPS) for NdNiO3 film: (a) Ni-2p core-level peak; (b) O-1s core-level peak. Near-edge X-ray absorption fine structure (NEXAFS) for NdNiO3 film: (c) Ni-L edge, (d) O-K edge.

    图 4  Nd1–xSmxNiO3薄膜的晶体结构和电子相变特性 (a) Nd1–xSmxNiO3 (x = 0, 0.25, 0.5) 薄膜的XRD图谱, 插图为Nd1–xSmxNiO3 (x = 0.75, 1) 薄膜的XRD图谱; (b) Nd1–xSmxNiO3 (x = 0, 0.25, 0.5) 薄膜c轴晶格参数随A位Sm元素共占据比例的变化关系图; (c) Nd1–xSmxNiO3 (x = 0, 0.25)薄膜的阻温特性曲线; (d) Nd1–xSmxNiO3 (x = 0, 0.25) 薄膜的相变温度随A位Sm元素共占据比例的变化关系图, 插图为Nd1–xSmxNiO3 (x = 0, 0.25, 0.5) 薄膜的TCR-T曲线

    Fig. 4.  Crystal structure and electronic phase transition for Nd1–xSmxNiO3 film material: (a) The XRD spectra for as-deposited Nd1–xSmxNiO3 films (x = 0, 0.25, 0.5), while the XRD spectra for as-deposited Nd1–xSmxNiO3 films (x = 0.75, 1) was shown in the inset; (b) the c-axis lattice constant for Nd1–xSmxNiO3 (x = 0, 0.25, 0.5) films plotted as a function of Sm substituting concentration; (c) the ρ-T tendency for Nd1–xSmxNiO3 films (x = 0, 0.25); (d) TMIT for as-grown Nd1–xSmxNiO3 (x = 0, 0.25) films plotted as a function of Sm substituting concentration; while the TCR-T tendency as achieved in the Nd1–xSmxNiO3 (x = 0, 0.25, 0.5) film was shown in the inset.

    图 5  Nd1–xSmxNiO3电输运特性的各向异性 (a) 不同取向NdNiO3薄膜的XRD图谱; (b)不同取向 NdNiO3的归一化阻温特性曲线; (c) NdNiO3相变温度随晶体学取向的变化关系图, 插图中为NdNiO3/LAO(111)异质结的AFM图; (d) 不同取向Nd1–xSmxNiO3薄膜的归一化阻温特性曲线, 插图为其XRD图谱

    Fig. 5.  Anisotropy in the electrical transport properties for Nd1–xSmxNiO3: (a) XRD spectra for differently oriented NdNiO3 films; (b) the normalized ρ-T tendency for differently oriented NdNiO3 films; (c) TMIT for NdNiO3 films plotted as a function of crystallographic orientation, while the respective AFM spectra of NdNiO3/LAO (111) heterostructure was shown in the inset; (d) the normalized ρ-T tendency for differently oriented Nd1–xSmxNiO3 films, while the respective XRD spectra are shown in the inset.

  • [1]

    Ding X, Tam C C, Sui X L, Zhao Y, Xu M H, Choi J, Leng H Q, Zhang J, Wu M, Xiao H Y, Zu X T, Garcia-Fernandez M, Agrestini S, Wu X Q, Wang Q Y, Gao P, Li S A, Huang B, Zhou K J, Qiao L 2023 Nature 615 50Google Scholar

    [2]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S 2013 Science 339 1402Google Scholar

    [3]

    Vistoli L, Wang W B, Sander A, Zhu Q X, Casals B, Cichelero R, Barthélémy A, Fusil S, Herranz G, Valencia S, Abrudan R, Weschke E, Nakazawa K, Kohno H, Santamaria J, Wu W D, Garcia V, Bibes M 2019 Nat. Phys. 15 67Google Scholar

    [4]

    周轩弛, 李海帆 2024 物理学报 73 117102Google Scholar

    Zhou X C, Li H F 2024 Acta Phys. Sin. 73 117102Google Scholar

    [5]

    Zhou X C, Shang Y L, Gu Z J, Jiang G Z, Ozawa T, Mao W, Fukutani K, Matsuzaki H, Jiang Y, Chen N F, Chen J K 2024 Appl. Phys. Lett. 124 082103Google Scholar

    [6]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y C, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [7]

    Bisogni V, Catalano S, Green R J, Gibert M, Scherwitzl R, Huang Y B, Strocov V N, Zubko P, Balandeh S, Triscone J M, Sawatzky G, Schmitt T 2016 Nat. Commun. 7 13017Google Scholar

    [8]

    Domínguez C, Georgescu A B, Mundet B, Zhang Y J, Fowlie J, Mercy A, Waelchli A, Catalano S, Alexander D T L, Ghosez P, Georges A, Millis A J, Gibert M, Triscone J M 2020 Nat. Mater. 19 1182Google Scholar

    [9]

    Song Q, Doyle S, Pan G A, El Baggari I, Segedin D F, Carrizales D C, Nordlander J, Tzschaschel C, Ehrets J R, Hasan Z, El-Sherif H, Krishna J, Hanson C, LaBollita H, Bostwick A, Jozwiak C, Rotenberg E, Xu S Y, Lanzara A, N'Diaye A T, Heikes C A, Liu Y H, Paik H, Brooks C M, Pamuk B, Heron J T, Shafer P, Ratcliff W D, Botana A S, Moreschini L, Mundy J A 2023 Nat. Phys. 19 522Google Scholar

    [10]

    Zhang H T, Park T J, Islam A, Tran D S J, Manna S, Wang Q, Mondal S, Yu H M, Banik S, Cheng S B, Zhou H, Gamage S, Mahapatra S, Zhu Y M, Abate Y, Jiang N, Sankaranarayanan S, Sengupta A, Teuscher C, Ramanathan S 2022 Science 375 533Google Scholar

    [11]

    Shi J, Zhou Y, Ramanathan S 2014 Nat. Commun. 5 4860Google Scholar

    [12]

    Shi J, Ha S D, Zhou Y, Schoofs F, Ramanathan S 2013 Nat. Commun. 4 2676Google Scholar

    [13]

    Scherwitzl R, Zubko P, Lezama I G, Ono S, Morpurgo A F, Catalan G, Triscone J M 2010 Adv. Mater. 22 5517Google Scholar

    [14]

    Phillips P J, Rui X, Georgescu A B, Disa A S, Longo P, Okunishi E, Walker F, Ahn C H, Ismail-Beigi S, Klie R F 2017 Phys. Rev. B 95 205131Google Scholar

    [15]

    Zhao W Y, Ma Z W, Shi Y, Fu R J, Wang K, Sui Y M, Xiao G J, Zou B 2023 Cell Rep. Phys. Sci. 4 101663Google Scholar

    [16]

    Zhao D L, Cong M, Liu Z, Ma Z W, Wang K, Xiao G J, Zou B 2023 Cell Rep. Phys. Sci. 4 101445Google Scholar

    [17]

    Shi Y, Zhao W Y, Ma Z W, Xiao G J, Zou B 2021 Chem. Sci. 12 14711Google Scholar

    [18]

    Zhou X C, Li H F, Jiao Y J, Zhou G W, Ji H H, Jiang Y, Xu X H 2024 Adv. Funct. Mater. 34 2316536Google Scholar

    [19]

    Zhang H T, Park T J, Zaluzhnyy I A, Wang Q, Wadekar S N, Manna S, Andrawis R, Sprau P O, Sun Y F, Zhang Z, Huang C Z, Zhou H, Zhang Z, Narayanan B, Srinivasan G, Hua N, Nazaretski E, Huang X J, Yan H F, Ge M Y, Chu Y S, Cherukara M J, Holt M V, Krishnamurthy M, Shpyrko O G, Sankaranarayanan S, Frano A, Roy K, Ramanathan S 2020 Nat. Commun. 11 2245Google Scholar

    [20]

    Zhang Z, Schwanz D, Narayanan B, Kotiuga M, Dura J A, Cherukara M, Zhou H, Freeland J W, Li J R, Sutarto R, He F Z, Wu C Z, Zhu J X, Sun Y F, Ramadoss K, Nonnenmann S S, Yu N F, Comin R, Rabe K M, Sankaranarayanan S, Ramanathan S 2018 Nature 553 68Google Scholar

    [21]

    Zhou Y, Guan X F, Zhou H, Ramadoss K, Adam S, Liu H J, Lee S, Shi J, Tsuchiya M, Fong D D, Ramanathan S 2016 Nature 534 231Google Scholar

    [22]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337Google Scholar

    [23]

    Mattoni G, Zubko P, Maccherozzi F, van der Torren A J H, Boltje D B, Hadjimichael M, Manca N, Catalano S, Gibert M, Liu Y, Aarts J, Triscone J M, Dhesi S S, Caviglia A D 2016 Nat. Commun. 7 13141Google Scholar

    [24]

    Zhou X C, Li H F, Meng F Q, Mao W, Wang J O, Jiang Y, Fukutani K, Wilde M, Fugetsu B, Sakata I, Chen N F, Chen J K 2022 J. Phys. Chem. Lett. 13 8078Google Scholar

    [25]

    Zhou X C, Cui Y C, Shang Y L, Li H F, Wang J O, Meng Y, Xu X, Jiang Y, Chen N F, Chen J K 2023 J. Phys. Chem. C 127 2639Google Scholar

    [26]

    Zhou X C, Li H F, Shang Y L, Meng F Q, Li Z A, Meng K K, Wu Y, Xu X G, Jiang Y, Chen N F, Chen J K 2023 Phys. Chem. Chem. Phys. 25 21908Google Scholar

    [27]

    Zhou X C, Jiao Y J, Li H F 2024 Appl. Phys. Lett. 125 032103Google Scholar

    [28]

    Schiffer P, Ramirez A P, Bao W, Cheong S W 1995 Phys. Rev. Lett. 75 3336Google Scholar

    [29]

    Catalano S, Gibert M, Fowlie J, Iñiguez J, Triscone J M, Kreisel J 2018 Rep. Prog. Phys. 81 046501Google Scholar

    [30]

    Nikulin I V, Novojilov M A, Kaul A R, Mudretsova S N, Kondrashov S V 2004 Mater. Res. Bull. 39 775Google Scholar

    [31]

    Escote M T, da Silva A M L, Matos J R, Jardim R F 2000 J. Solid State Chem. 151 298Google Scholar

    [32]

    Chen X G, Zhang X, Koten M A, Chen H H, Xiao Z Y, Zhang L, Shield J E, Dowben P A, Hong X 2017 Adv. Mater. 29 1701385Google Scholar

    [33]

    Hadjimichael M, Mundet B, Domínguez C, Waelchli A, De Luca G, Spring J, Jöhr S, Walker S M, Piamonteze C, Alexander D T L, Triscone J M, Gibert M 2023 Adv. Electron. Mater. 9 2201182Google Scholar

    [34]

    Demazeau G, Marbeuf A, Pouchard M, Hagenmuller P 1971 J. Solid State Chem. 3 582Google Scholar

    [35]

    Chen J K, Li Z A, Dong H L, Xu J N, Wang V, Feng Z J, Chen Z Q, Chen B, Chen N F, Mao H K 2020 Adv. Funct. Mater. 30 2000987Google Scholar

    [36]

    Chen J K, Hu H Y, Wang J O, Yajima T, Ge B H, Ke X Y, Dong H L, Jiang Y, Chen N F 2019 Mater. Horiz. 6 788Google Scholar

    [37]

    Chen J H, Chen J K, Ren Z Y, Zhao D D, Wang M X, Miao J, Xu X G, Jiang Y, Chen N F 2021 J. Rare Earths 39 174Google Scholar

    [38]

    Zhou X C, Wu Y, Yan F B, Zhang T Z, Ke X Y, Meng K K, Xu X G, Li Z P, Miao J, Chen J K, Jiang Y 2021 Ceram. Int. 47 25574Google Scholar

    [39]

    Catalan G 2008 Phase Transit. 81 729Google Scholar

    [40]

    Zhou X C, Mao W, Cui Y C, Zhang H, Liu Q, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2023 Adv. Funct. Mater. 33 2303416Google Scholar

    [41]

    Zhong J, Li Z, Zheng Y Q, Jiang P H, Zhang F, Zhang T, Cui Y C, Zhong Z C, Chen N F, Chen J K 2023 J. Am. Ceram. Soc. 106 5067Google Scholar

    [42]

    Chen J K, Hu H Y, Meng F Q, Yajima T, Yang L X, Ge B H, Ke X Y, Wang J O, Jiang Y, Chen N F 2020 Matter 2 1296Google Scholar

  • [1] 杨栋超, 易立志, 丁林杰, 刘敏, 朱丽娅, 许云丽, 何雄, 沈顺清, 潘礼庆, JohnQ. Xiao. 铁磁绝缘体中磁振子的非平衡稳态输运性质. 物理学报, 2024, 73(14): 147101. doi: 10.7498/aps.73.20240498
    [2] 周轩弛, 李海帆. 强关联电子相变氧化物材料及多场调控. 物理学报, 2024, 73(11): 117102. doi: 10.7498/aps.73.20240289
    [3] 赖赣平, 张晓卫. 考虑原子亚稳态的镥金属蒸发过程模拟研究. 物理学报, 2023, 72(18): 184702. doi: 10.7498/aps.72.20230602
    [4] 李明, 金平实, 曹逊. 稀土含氧氢化物光致变色薄膜研究现状. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221046
    [5] 李明, 金平实, 曹逊. 稀土含氧氢化物光致变色薄膜研究现状. 物理学报, 2022, 71(21): 218101. doi: 10.7498/aps.71.20221046
    [6] 房晓南, 危芹, 隋娜娜, 孔志勇, 刘静, 杜颜伶. 间隔层调控SrVO3/SrTiO3超晶格铁磁半金属-铁磁绝缘体转变. 物理学报, 2022, 71(23): 237301. doi: 10.7498/aps.71.20221765
    [7] 房晓南, 杜颜伶, 吴晨雨, 刘静. (SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究. 物理学报, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [8] 李云, 鲁文建. 掺杂维度和浓度调控的δ掺杂的La:SrTiO3超晶格结构金属-绝缘体转变. 物理学报, 2021, 70(22): 227102. doi: 10.7498/aps.70.20210830
    [9] 包定华. 稀土发光铁电薄膜的研究进展. 物理学报, 2020, 69(12): 127712. doi: 10.7498/aps.69.20200738
    [10] 焦媛媛, 孙建平, Prashant Shahi, 刘哲宏, 王铂森, 龙有文, 程金光. Pb掺杂对Cd2Ru2O7反常金属态的调控. 物理学报, 2018, 67(12): 127402. doi: 10.7498/aps.67.20180343
    [11] 王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄. 电触发二氧化钒纳米线发生金属-绝缘体转变的机理. 物理学报, 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [12] 何龙, 宋筠. 双层石墨烯材料中无序导致超导-绝缘体相变的数值研究. 物理学报, 2013, 62(5): 057303. doi: 10.7498/aps.62.057303
    [13] 王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月. 硅基VO2纳米薄膜光致绝缘体—金属相变的THz时域频谱研究. 物理学报, 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [14] 彭振生, 唐永刚, 严国清, 郭焕银, 毛 强. La0.67Sr0.08Na0.25MnO3的奇特输运性质及CMR效应. 物理学报, 2007, 56(3): 1707-1712. doi: 10.7498/aps.56.1707
    [15] 许北雪, 吴锦雷, 刘惟敏, 杨海, 邵庆益, 刘盛, 薛增泉, 吴全德. 稀土对金属纳米粒子-介质复合薄膜(Ag-BaO)光电发射性能的增强. 物理学报, 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
    [16] 何杰, 许振嘉. 一种新的反应机制——轻稀土金属薄膜与Si衬底的反应机理研究. 物理学报, 1993, 42(10): 1617-1626. doi: 10.7498/aps.42.1617
    [17] 杨永宏, 邢定钰, 龚昌德. YBa2Cu3O7-x的金属-绝缘体转变. 物理学报, 1992, 41(1): 136-143. doi: 10.7498/aps.41.136
    [18] 李宝祥. 稀土五磷酸盐晶体显微硬度的测定. 物理学报, 1989, 38(1): 128-133. doi: 10.7498/aps.38.128
    [19] 李宝祥. 稀土五磷酸盐晶体折射率和密度的测定. 物理学报, 1987, 36(6): 823-827. doi: 10.7498/aps.36.823
    [20] 虞心南, 张青哲, 谢侃, 齐上雪, 康瑾, 林彰达. 富镧混合稀土-镍贮氢材料CO,O2和H2O中毒的表面特征. 物理学报, 1983, 32(10): 1333-1338. doi: 10.7498/aps.32.1333
计量
  • 文章访问数:  908
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-28
  • 修回日期:  2024-08-29
  • 上网日期:  2024-09-05
  • 刊出日期:  2024-10-05

/

返回文章
返回