搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镜像与反镜像扭曲高斯谢尔模光束的传输特性

袁鹏举 杨蕴哲 董世杰 唐苗苗

引用本文:
Citation:

镜像与反镜像扭曲高斯谢尔模光束的传输特性

袁鹏举, 杨蕴哲, 董世杰, 唐苗苗

Propagation properties of specular and antispecular twisted Gaussian Schell-model beams

Yuan Peng-Ju, Yang Yun-Zhe, Dong Shi-Jie, Tang Miao-Miao
PDF
HTML
导出引用
  • 通过将扭曲高斯谢尔模光束入射到波前折叠干涉仪(WFI), 构建了一类镜像与反镜像扭曲高斯谢尔模光束, 并研究了光束在传输过程中的二阶统计特性. 结果表明, 变换光场仍保持扭曲效应, 其光谱密度和光谱相干度在传输过程中绕轴旋转, 但二者的旋向相反. 值得注意的是, 扭曲相位不仅能控制光场的旋转速度, 还能有效调控光斑的整体轮廓分布, 而中心区域的光斑模式则由WFI的相位差调控主导, 具体表现为镜像扭曲光场在传输过程中始终表现为中央亮斑分布, 反镜像扭曲光场则表现为中央暗核分布. 此外, 本文证明了光场的光谱相干度可由光源相干性、扭曲相位和WFI相位差等参数灵活调制. 本研究结果对于自由空间光通信以及微粒捕获等领域有重要应用价值.
    We introduce a class of specular and antispecular twisted Gaussian Schell-model beams, which are generated by inserting a twisted Gaussian Schell-model beam into a wavefront folding interferometer (WFI). The analytical expression for the cross-spectral density function of the beam propagating in free space is derived, and the statistical properties of the optical field are investigated in detail. The results show that the twisted effect is still maintained after the transformation, and the spectral density of the light field always rotates to 90 degrees around the axis during propagation. Furthermore, with appropriate optical field adjustment, the twist effect of the spectral degree of coherence (DOC) can be observed, but in opposite directions to the irradiance profile. We also find that the twisted phase not only controls the rotation of the field, but also effectively modulates the overall spot contour. For the far-field spectral density distribution, a larger twist effect will induce a smaller ellipticity of the beam spot. However, the intensity pattern in the central area is mainly determined by the phase difference of WFI. To be specific, the specular twisted field always has a sharp central peak during propagation, and in the antispecular case it has a central dip. Besides, the DOC distribution can be flexibly adjusted by the source coherence, the twisted phase and the phase difference of the WFI. The results of our work have important applications in the fields of free-space beam communication and particle trapping.
      通信作者: 唐苗苗, tmiaomiao0371@163.com
    • 基金项目: 国家自然科学基金(批准号: 12174089)、河南省自然科学基金(批准号: 222300420042, 242300420635)和河南省高等学校青年骨干教师培养计划(批准号: 2023GGJS047)资助的课题.
      Corresponding author: Tang Miao-Miao, tmiaomiao0371@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174089), the Natural Science Foundation of Henan Province, China (Grant Nos. 222300420042, 242300420635), and the Cultivation Program for Young Backbone Teachers of Higher Education Institutions in Henan Province, China (Grant No. 2023GGJS047).
    [1]

    Simon R, Sudarshan E, Mukunda N 1985 Phys. Rev. A 31 2419Google Scholar

    [2]

    Cai Y J, Korotkova O 2009 Appl. Phys. B 96 499Google Scholar

    [3]

    Tong Z S, Korotkova O 2012 Opt. Lett. 37 2595Google Scholar

    [4]

    Cui Y, Wang F, Cai Y J 2014 Opt. Commun. 324 108Google Scholar

    [5]

    Cai Y J, Lin Q, Korotkova O 2009 Opt. Express 17 2453Google Scholar

    [6]

    Mao Y H, Mei Z R, Wang Y Y, Zhou G Q, Qiu P Z 2020 Opt. Commun. 477 126321Google Scholar

    [7]

    Simon R, Mukunda N 1993 J. Opt. Soc. Am. A 10 95Google Scholar

    [8]

    Friberg A T, Tervonen E, Turunen J 1994 J. Opt. Soc. Am. A 11 1818Google Scholar

    [9]

    Borghi R, Gori F, Guattari G, Santarsiero M 2015 Opt. Lett. 40 4504Google Scholar

    [10]

    Borghi R 2018 Opt. Lett. 43 1627Google Scholar

    [11]

    Mei Z R, Korotkova O 2017 Opt. Lett. 42 255Google Scholar

    [12]

    Gori F, Santarsiero M 2018 Opt. Lett. 43 595Google Scholar

    [13]

    Peng X F, Liu L, Wang F, Popov S, Cai Y J 2018 Opt. Express 26 33956Google Scholar

    [14]

    Santarsiero M, Gori F, Alonzo M 2019 Opt. Express 27 8554Google Scholar

    [15]

    Mei Z, Korotkova O 2018 Opt. Lett. 43 3905Google Scholar

    [16]

    Tian C, Zhu S J, Huang H K, Cai Y J, Li Z H 2020 Opt. Lett. 45 5880Google Scholar

    [17]

    Wang H Y, Peng X F, Zhang H, Liu L, Chen Y H, Wang F, Cai Y J 2022 Nanophotonics-Berlin 11 689Google Scholar

    [18]

    Dong S J, Yang Y Z, Zhou Y J, Li X Z, Tang M M 2024 J. Opt. 26 065608Google Scholar

    [19]

    Ponomarenko S A 2001 Phys. Rev. E. 64 036618Google Scholar

    [20]

    Wu G F 2016 J. Opt. Soc. Am. A 33 345Google Scholar

    [21]

    Zhang C, Zhou Z L, Xu H F, Zhou Z X, Han Y S, Yuan Y S, Qu J 2022 Opt. Express 30 4071Google Scholar

    [22]

    Zhang C Y, Fu W Y 2024 Opt. Appl. 54 15Google Scholar

    [23]

    Wan L P, Zhao D M 2019 Opt. Lett. 44 735Google Scholar

    [24]

    Cai Y J, Lin Q, Ge D 2002 J. Opt. Soc. Am. A Opt. Image Sci. Vis. 19 2036Google Scholar

    [25]

    Gori F, Guattari G, Palma C, Padovani C 1988 Opt. Commun. 68 239Google Scholar

    [26]

    Partanen H, Sharmin N, Tervo J, Turunen J 2015 Opt. Express 23 28718Google Scholar

    [27]

    Guo M W, Zhao D M 2016 Opt. Express 24 6115Google Scholar

    [28]

    Zhou Z T, Guo M W, Zhao D M 2016 Appl. Opt. 55 6757Google Scholar

    [29]

    Zhou Z T, Guo M W, Zhao D M 2017 Opt. Commun. 383 287Google Scholar

    [30]

    Das D, Halder A, Partanen H, Koivurova M, Turunen J 2022 Opt. Express 30 5709Google Scholar

    [31]

    Tang M M, Dong S J, Yang Y Z, Zhou Y J, Guo M W, Li X Z 2024 J. Opt. 26 065601Google Scholar

    [32]

    Guo M W, Zhao D M 2018 Opt. Express 26 8581Google Scholar

    [33]

    Tang M M, Feng X X, Liu S Y, Li H H, Li X Z 2021 J. Opt. 23 045605Google Scholar

    [34]

    Li C Q, Zhang H Y, Wang T F, Liu L S, Guo J 2013 Acta Phys. Sin. 62 224203Google Scholar

    [35]

    徐华锋, 张兴宇, 王仁杰 2024 物理学报 73 034201Google Scholar

    Xu H F, Zhang X Y, Wang R J 2024 Acta Phys. Sin. 73 034201Google Scholar

    [36]

    王飞, 余佳益, 刘显龙, 蔡阳健 2018 物理学报 67 184203Google Scholar

    Wang F, Yu J Y, Liu X L, Cai Y J 2018 Acta Phys. Sin. 67 184203Google Scholar

    [37]

    Liu Y L, Dong Z, Zhu Y M, Wang H Y, Wang F, Chen Y H, Cai Y J 2024 PhotoniX 5 8Google Scholar

    [38]

    Yu J Y, Zhu X L, Wang F, Chen Y H, Cai Y J 2023 Prog. Quant. Electron. 91-92 100486Google Scholar

    [39]

    Chen Y H, Wang F, Cai Y J 2022 Adv. Phys-X 7 2009742Google Scholar

    [40]

    Peng D M, Huang Z F, Liu Y L, Chen Y H, Wang F, Ponomarenko S A, Cai Y J 2021 PhotoniX 2 6Google Scholar

  • 图 1  波前折叠干涉仪(WFI), 其中S为光源, BS为非偏振分束器, P1和P2为直角棱镜, D为探测器

    Fig. 1.  Wavefront-folding interferometer (WFI). S is the source, BS is a non-polarizing beam splitter, P1 and P2 are right-angle prisms, and D is a detector.

    图 2  WFI输出平面上的归一化光谱密度$ {{S\left( {x', y'} \right)} {/ } {{S_{\max }}}} $ (a) $\phi = 0$; (b) $ \phi = {{\text{π}} {/ } {2}} $; (c): $\phi = {\text{π}}$

    Fig. 2.  Normalized spectral density $ {{S\left( {x', y'} \right)} {/ } {{S_{\max }}}} $ in the WFI output plane: (a) $\phi = 0$; (b) $ \phi = {{\text{π}} {/ } {2}} $; (c) $\phi = {\text{π}}$.

    图 3  WFI输出平面上的归一化光谱相干度$ \mu \left( {{x'_1}, {0}, {x'_2}, {0}} \right) $

    Fig. 3.  Spectral degree of coherence $ \mu \left( {{x'_1}, {0}, {x'_2}, {0}} \right) $ in the WFI output plane.

    图 4  变换扭曲光场在自由空间传输过程中的归一化光谱密度$S\left( {x, y, z} \right)/{S_{\max }}$的演变规律

    Fig. 4.  Evolution of the normalized spectral density $S\left( {x, y, z} \right)/{S_{\max }}$ of the transformed twisted field on propagation.

    图 5  扭曲因子对镜像扭曲光场的归一化光谱密度$S\left( {x, y, z} \right)/{S_{\max }}$的影响 (a) z = 0 mm; (b) z = 200 mm; (c) z = 4000 mm

    Fig. 5.  Influence of the twist factor on the normalized spectral density $S\left( {x, y, z} \right)/{S_{\max }}$ of the specular twisted field: (a) z = 0 mm; (b) z = 200 mm; (c) z = 4000 mm.

    图 6  两个对称点之间的光谱相干度$\mu \left( {x/2, y/2, - x/2, - y/2, z} \right)$在传输距离z = 400 mm处沿$ x $轴的二维分布 (a) wx = 0.5 mm, $ {\delta _x} = {\delta _y} = 0.2 {\text{ mm}} $; (b) $\phi = {{\text{π}} {/ } {4}}$, $ {\delta _x} = {\delta _y} = 0.2 {\text{ mm}} $; (c) $\phi = {{\text{π}} {/ } {4}}$, wx = 0.5 mm

    Fig. 6.  Spectral degree of coherence $\mu \left( {x/2, y/2, - x/2, - y/2, z} \right)$ between two symmetrical points at the propagation distance z = 400 mm along $ x $ axis: (a) wx = 0.5 mm, $ {\delta _x} = {\delta _y} = 0.2 {\text{ mm}} $; (b) $\phi = {{\text{π}} {/ } {4}}$, $ {\delta _x} = {\delta _y} = 0.2 {\text{ mm}} $; (c) $\phi = {{\text{π}} {/ } {4}}$, wx = 0.5 mm.

    图 7  两个对称点之间的光谱相干度$\mu \left( {x/2, y/2, - x/2, - y/2, z} \right)$随干涉仪两光路相位差$ \phi $的分布情况 (a) wx = 0.5 mm, $ {\delta _x} = {\delta _y} = 0.2 {\text{ mm}} $; (b) z = 400 mm, $ {\delta _x} = {\delta _y} = 0.2 {\text{ mm}} $

    Fig. 7.  Spectral degree of coherence $\mu \left( {x/2, y/2, - x/2, - y/2, z} \right)$ along $ \phi $: (a) wx = 0.5 mm, $ {\delta _x} = {\delta _y} = 0.2 {\text{ mm}} $; (b) z = 400 mm, $ {\delta _x} = {\delta _y} = 0.2 {\text{ mm}} $.

    图 8  两个对称点之间的光谱相干度$\mu ( {x/2, y/2, - x/2, - y/2, z} )$在传输过程中的演化规律, 其中$ \phi = {\text{π}}/4 $

    Fig. 8.  Evolution of the spectral degree of coherence $\mu ( {x/2, y/2, - x/2, - y/2, z} )$ between two symmetrical points on propagation, and $ \phi = {\text{π}}/4 $.

  • [1]

    Simon R, Sudarshan E, Mukunda N 1985 Phys. Rev. A 31 2419Google Scholar

    [2]

    Cai Y J, Korotkova O 2009 Appl. Phys. B 96 499Google Scholar

    [3]

    Tong Z S, Korotkova O 2012 Opt. Lett. 37 2595Google Scholar

    [4]

    Cui Y, Wang F, Cai Y J 2014 Opt. Commun. 324 108Google Scholar

    [5]

    Cai Y J, Lin Q, Korotkova O 2009 Opt. Express 17 2453Google Scholar

    [6]

    Mao Y H, Mei Z R, Wang Y Y, Zhou G Q, Qiu P Z 2020 Opt. Commun. 477 126321Google Scholar

    [7]

    Simon R, Mukunda N 1993 J. Opt. Soc. Am. A 10 95Google Scholar

    [8]

    Friberg A T, Tervonen E, Turunen J 1994 J. Opt. Soc. Am. A 11 1818Google Scholar

    [9]

    Borghi R, Gori F, Guattari G, Santarsiero M 2015 Opt. Lett. 40 4504Google Scholar

    [10]

    Borghi R 2018 Opt. Lett. 43 1627Google Scholar

    [11]

    Mei Z R, Korotkova O 2017 Opt. Lett. 42 255Google Scholar

    [12]

    Gori F, Santarsiero M 2018 Opt. Lett. 43 595Google Scholar

    [13]

    Peng X F, Liu L, Wang F, Popov S, Cai Y J 2018 Opt. Express 26 33956Google Scholar

    [14]

    Santarsiero M, Gori F, Alonzo M 2019 Opt. Express 27 8554Google Scholar

    [15]

    Mei Z, Korotkova O 2018 Opt. Lett. 43 3905Google Scholar

    [16]

    Tian C, Zhu S J, Huang H K, Cai Y J, Li Z H 2020 Opt. Lett. 45 5880Google Scholar

    [17]

    Wang H Y, Peng X F, Zhang H, Liu L, Chen Y H, Wang F, Cai Y J 2022 Nanophotonics-Berlin 11 689Google Scholar

    [18]

    Dong S J, Yang Y Z, Zhou Y J, Li X Z, Tang M M 2024 J. Opt. 26 065608Google Scholar

    [19]

    Ponomarenko S A 2001 Phys. Rev. E. 64 036618Google Scholar

    [20]

    Wu G F 2016 J. Opt. Soc. Am. A 33 345Google Scholar

    [21]

    Zhang C, Zhou Z L, Xu H F, Zhou Z X, Han Y S, Yuan Y S, Qu J 2022 Opt. Express 30 4071Google Scholar

    [22]

    Zhang C Y, Fu W Y 2024 Opt. Appl. 54 15Google Scholar

    [23]

    Wan L P, Zhao D M 2019 Opt. Lett. 44 735Google Scholar

    [24]

    Cai Y J, Lin Q, Ge D 2002 J. Opt. Soc. Am. A Opt. Image Sci. Vis. 19 2036Google Scholar

    [25]

    Gori F, Guattari G, Palma C, Padovani C 1988 Opt. Commun. 68 239Google Scholar

    [26]

    Partanen H, Sharmin N, Tervo J, Turunen J 2015 Opt. Express 23 28718Google Scholar

    [27]

    Guo M W, Zhao D M 2016 Opt. Express 24 6115Google Scholar

    [28]

    Zhou Z T, Guo M W, Zhao D M 2016 Appl. Opt. 55 6757Google Scholar

    [29]

    Zhou Z T, Guo M W, Zhao D M 2017 Opt. Commun. 383 287Google Scholar

    [30]

    Das D, Halder A, Partanen H, Koivurova M, Turunen J 2022 Opt. Express 30 5709Google Scholar

    [31]

    Tang M M, Dong S J, Yang Y Z, Zhou Y J, Guo M W, Li X Z 2024 J. Opt. 26 065601Google Scholar

    [32]

    Guo M W, Zhao D M 2018 Opt. Express 26 8581Google Scholar

    [33]

    Tang M M, Feng X X, Liu S Y, Li H H, Li X Z 2021 J. Opt. 23 045605Google Scholar

    [34]

    Li C Q, Zhang H Y, Wang T F, Liu L S, Guo J 2013 Acta Phys. Sin. 62 224203Google Scholar

    [35]

    徐华锋, 张兴宇, 王仁杰 2024 物理学报 73 034201Google Scholar

    Xu H F, Zhang X Y, Wang R J 2024 Acta Phys. Sin. 73 034201Google Scholar

    [36]

    王飞, 余佳益, 刘显龙, 蔡阳健 2018 物理学报 67 184203Google Scholar

    Wang F, Yu J Y, Liu X L, Cai Y J 2018 Acta Phys. Sin. 67 184203Google Scholar

    [37]

    Liu Y L, Dong Z, Zhu Y M, Wang H Y, Wang F, Chen Y H, Cai Y J 2024 PhotoniX 5 8Google Scholar

    [38]

    Yu J Y, Zhu X L, Wang F, Chen Y H, Cai Y J 2023 Prog. Quant. Electron. 91-92 100486Google Scholar

    [39]

    Chen Y H, Wang F, Cai Y J 2022 Adv. Phys-X 7 2009742Google Scholar

    [40]

    Peng D M, Huang Z F, Liu Y L, Chen Y H, Wang F, Ponomarenko S A, Cai Y J 2021 PhotoniX 2 6Google Scholar

  • [1] 陈康, 马志远, 张明明, 窦健泰, 胡友友. 部分相干幂指数相位涡旋光束的传输特性研究. 物理学报, 2022, 71(1): 014203. doi: 10.7498/aps.71.20211411
    [2] 郭良浩, 王少萌, 杨利霞, 王凯程, 马佳路, 周俊, 宫玉彬. 太赫兹波在神经细胞中传输的弱谐振效应. 物理学报, 2021, 70(24): 240301. doi: 10.7498/aps.70.20211677
    [3] 陈康, 马志远, 张明明, 窦健泰, 胡友友. 部分相干幂指数相位涡旋光束的传输特性研究*. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211411
    [4] 朱开成, 梁瑞生, 易亚军, 刘伟慈, 朱洁. 附加球面相位引致Airy光束在单轴晶体传输时的两次镜像演化. 物理学报, 2020, 69(9): 094102. doi: 10.7498/aps.69.20191592
    [5] 王飞, 余佳益, 刘显龙, 蔡阳健. 部分相干光束经过湍流大气传输研究进展. 物理学报, 2018, 67(18): 184203. doi: 10.7498/aps.67.20180877
    [6] 刘永欣, 陈子阳, 蒲继雄. 随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性. 物理学报, 2017, 66(12): 124205. doi: 10.7498/aps.66.124205
    [7] 朱洁, 唐慧琴, 李晓利, 刘小钦. 具有余弦-高斯关联结构函数部分相干贝塞尔-高斯光束的传输性质及四暗空心光束的产生. 物理学报, 2017, 66(16): 164202. doi: 10.7498/aps.66.164202
    [8] 郑尚彬, 唐碧华, 姜云海, 罗亚梅, 高曾辉. 部分相干刃型位错光束的谱Stokes奇点. 物理学报, 2016, 65(1): 014202. doi: 10.7498/aps.65.014202
    [9] 余佳益, 陈亚红, 蔡阳健. 非均匀拉盖尔-高斯关联光束及其传输特性. 物理学报, 2016, 65(21): 214202. doi: 10.7498/aps.65.214202
    [10] 柯熙政, 王姣. 大气湍流中部分相干光束上行和下行传输偏振特性的比较. 物理学报, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [11] 张磊, 陈子阳, 崔省伟, 刘绩林, 蒲继雄. 非均匀部分相干光束在自由空间中的传输. 物理学报, 2015, 64(3): 034205. doi: 10.7498/aps.64.034205
    [12] 丁攀峰, 蒲继雄. 部分相干涡旋光束传输中的光斑分析. 物理学报, 2012, 61(17): 174201. doi: 10.7498/aps.61.174201
    [13] 黄永超, 张廷蓉, 陈森会, 宋宏远, 李艳桃, 张伟林. 椭圆高斯光束在单轴晶体中垂直于光轴的传输特性. 物理学报, 2011, 60(7): 074212. doi: 10.7498/aps.60.074212
    [14] 阮存军, 王树忠, 韩莹, 李庆生. 高传输通过率带状电子注聚焦与传输特性的研究. 物理学报, 2011, 60(8): 084105. doi: 10.7498/aps.60.084105
    [15] 丁攀峰, 蒲继雄. 拉盖尔高斯涡旋光束的传输. 物理学报, 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [16] 杜广星, 钱宝良. 准矩形截面强流相对论带状电子束的传输. 物理学报, 2010, 59(7): 4626-4633. doi: 10.7498/aps.59.4626
    [17] 梁林云, 戴松元, 方霞琴, 胡林华. 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究. 物理学报, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [18] 颜森林. 混沌信号在光纤传输过程中的非线性演化. 物理学报, 2007, 56(4): 1994-2004. doi: 10.7498/aps.56.1994
    [19] 殷建玲, 刘承宜, 杨友源, 刘 江, 范广涵. 原子激光传输的有效ABCD形式研究. 物理学报, 2004, 53(2): 356-361. doi: 10.7498/aps.53.356
    [20] 苏纬仪, 杨 涓, 魏 昆, 毛根旺, 何洪庆. 金属平板前等离子体的电磁波功率反射系数计算分析. 物理学报, 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
计量
  • 文章访问数:  280
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-23
  • 修回日期:  2024-09-02
  • 上网日期:  2024-09-20

/

返回文章
返回