搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温超导约瑟夫森结技术及应用于液氮温区量子电压标准的可能性

陈紫雯 朱珠 康焱 焦玉民 张力丹 张焱 马平

引用本文:
Citation:

高温超导约瑟夫森结技术及应用于液氮温区量子电压标准的可能性

陈紫雯, 朱珠, 康焱, 焦玉民, 张力丹, 张焱, 马平
cstr: 32037.14.aps.74.20241262

High-temperature superconducting Josephson junction technology and its potential application to quantum voltage standards in liquid nitrogen temperature range

CHEN Ziwen, ZHU Zhu, KANG Yan, JIAO Yumin, ZHANG Lidan, ZHANG Yan, MA Ping
cstr: 32037.14.aps.74.20241262
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文对液氮温区约瑟夫森电压标准的物理原理、相关应用研究的发展历史、研究现状以及未来发展方向进行了综述. 液氮温区工作的约瑟夫森电压标准具有移动性强、能耗小等特点, 便于应用推广. 本文描述了目前约瑟夫森量子电压标准的研究现状, 重点探讨了基于高温超导体发展液氮温区量子电压标准可能性, 以及目前在芯片制备方面存在的各种挑战. 在此基础上, 介绍了超导约瑟夫森结阵列的一种新型制备技术, 即聚焦氦离子辐照技术, 其在高一致性约瑟夫森结阵列的制备上可能具有优势, 是未来探索实现液氮温区量子电压计量标准的一种可能技术路线.
    This paper reviews the physical principles, development history of related application research, current research status and prospects of the Josephson voltage standard (JVS) working at liquid helium temperatures. The JVS working at liquid helium temperature has advantages of high mobility and low-energy consumption, and has a broad application prospect. This paper describes the research status of Josephson voltage standards, focusing on the possibility of developing a JVS based on high-temperature superconductors, and the challenges in chip preparation. In addition, a newly developed preparation technology for Josephson junction, namely the focused helium ion beam, is introduced. It has advantages in the preparation of high consistent Josephson junction arrays in high consistency. Therefore, it is a possible technical route for exploring the realization of JVS working at liquid helium temperature in the future.
      通信作者: 朱珠, hrb_zz@sina.com ; 张焱, zhang_yan@pku.edu.cn ; 马平, maping@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61571019)、国家重点研发计划(批准号: 2020YFF01014706, 2017YFC0601901)和2024年北京大学“仪器创制与关键技术研发”项目资助的课题.
      Corresponding author: ZHU Zhu, hrb_zz@sina.com ; ZHANG Yan, zhang_yan@pku.edu.cn ; MA Ping, maping@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61571019), the National Key Research and Development Program of China (Grant Nos. 2020YFF01014706, 2017YFC0601901), and the 2024 Peking University ‘Instrument Creation and Key Technology Research and Development’ Program, China.
    [1]

    Josephson B D 1962 Phys. Lett. 1 251Google Scholar

    [2]

    Clarke J, Braginski A I 2003 The SQUID handbook (Volume II. ed.) (Weinheim: Wiley-VCH

    [3]

    Hamilton C A 2000 Rev. Sci. Instrum. 71 3611Google Scholar

    [4]

    Kohlmann J, Behr R, Funck T 2003 Meas. Sci. Technol. 14 1216Google Scholar

    [5]

    Shapiro S 1963 Phys. Rev. Lett. 11 80Google Scholar

    [6]

    Klushin A M, Lesueur J, Kampik M, Raso F, Sosso A, Khorshev S K, Bergeal N, Couëdo F, Feuillet-Palma C, Durandetto P, Grzenik M, Kubiczek K, Musiol K, Skorkowski A 2020 IEEE Instrum. Meas. Mag. 23 4Google Scholar

    [7]

    Mccumber D E 1968 J. Appl. Phys. 39 3113Google Scholar

    [8]

    Jain A K, Lukens J E, Tsai J S 1987 Phys. Rev. Lett. 58 1165Google Scholar

    [9]

    Degennes P G 1964 Rev. Mod. Phys. 36 225Google Scholar

    [10]

    Gurvitch M, Washington M A, Huggins H A 1983 Appl. Phys. Lett. 42 472Google Scholar

    [11]

    Niemeyer J, Hinken J H, Kautz R L 1984 Appl. Phys. Lett. 45 478Google Scholar

    [12]

    Primary Voltage Standard Josephson Junction Arrays, Hypres https://www.hypres.com/products/ [2024-8-7]

    [13]

    Schulze H, Behr R, Muller F, Niemeyer J 1998 Appl. Phys. Lett. 73 996Google Scholar

    [14]

    Schulze H, Behr R, Kohlmann J, Müller F, Niemeyer J 2000 Supercond. Sci. Technol. 13 1293Google Scholar

    [15]

    Zhong Q, Zhong Y, He Q, Zhang J 2008 Cryog. Supercond. 36 32Google Scholar

    [16]

    SRI 6000 Series Programmable Josephson Voltage Standard (PJVS), NIST https://www.nist.gov/sri/standard-reference-instruments/ [2024-8-7]

    [17]

    AC Quantum Voltmeter Cooler, Supracon http://www.supracon.com/en/ [2024-8-7]

    [18]

    Rüfenacht A, Flowers-Jacobs N E, Benz S P 2018 Metrologia 55 S152Google Scholar

    [19]

    Dresselhaus P D, Elsbury M M, Olaya D, Burroughs C J, Benz S P 2011 IEEE Trans. Appl. Supercond. 21 693Google Scholar

    [20]

    Mueller F, Behr R, Weimann T, Palafox L, Olaya D, Dresselhaus P D, Benz S P 2009 IEEE Trans. Appl. Supercond. 19 981Google Scholar

    [21]

    Yamamori H, Ishizaki M, Shoji A, Dresselhaus P D, Benz S P 2006 Appl. Phys. Lett. 88 042503Google Scholar

    [22]

    曹文会, 李劲劲, 钟青, 郭小玮, 贺青, 迟宗涛 2012 物理学报 61 170304Google Scholar

    Cao W W, Li J J, Zhong Q, Guo X W, He Q, Chi Z T 2012 Acta Phys. Sin. 61 170304Google Scholar

    [23]

    Cao W H, Li J J, Zhong Y, He Q 2015 Chin. Phys. B 24 127402Google Scholar

    [24]

    Yu H F, Cao W H, Zhu X B, Yang H F, Yu H W, Ren Y F, Gu C Z, Chen G H, Zhao S P 2008 Chin. Phys. B 17 3083Google Scholar

    [25]

    Cao W H, Yu H F, Tian Y, Yu H W, Ren Y F, Chen G H, Zhao S P 2009 Chin. Phys. B 18 5044Google Scholar

    [26]

    Xu W N, Ying L L, Lin Q, Ren J, Wang Z 2021 Supercond. Sci. Technol. 34 085002Google Scholar

    [27]

    Li X, Tan J R, Zheng K M, Zhang L B, Zhang L J, He W J, Huang P W, Li H C, Zhang B, Chen Q, Ge R, Guo S Y, Huang T, Jia X Q, Zha Q Y, Tu X C, Kang L, Chen J, Wu P H 2020 Photonics Res. 8 637Google Scholar

    [28]

    李春光, 王佳, 吴云, 王旭, 孙亮, 董慧, 高波, 李浩, 尤立星, 林志荣, 任洁, 李婧, 张文, 贺青, 王轶文, 韦联福, 孙汉聪, 王华兵, 李劲劲, 屈继峰 2021 物理学报 70 018501Google Scholar

    Li C G, Wang J, Wu Y, Wang X, Sun L, Dong H, Gao B, Li H, You L X, Lin Z R, Ren J, Li J, Zhang W, He Q, Wang Y W, Wei L F, Sun H C, Wang H B, Li J J, Qu J F 2021 Acta Phys. Sin. 70 018501Google Scholar

    [29]

    李劲劲 2021 科技成果管理与研究 16 72Google Scholar

    Li J J 2021 Management and Research on Scientific & Technological Achievements 16 72Google Scholar

    [30]

    朱珠, 康焱, 王路, 胡毅飞 2018 宇航计测技术 38 12Google Scholar

    Zhu Z, Kang Y, Wang L, Hu Y F 2018 J Astronaut. Metrol. Meas. 38 12Google Scholar

    [31]

    李红晖, 王曾敏, 徐晴, 田正其, 段梅梅, 王磊 2023 计量学报 44 1564Google Scholar

    Li H H, Wang Z M, Xu Q, Tian Z Q, Duan M M, Wang L 2023 Acta. Metrol. Sin. 44 1564Google Scholar

    [32]

    Trinchera B, Durandetto P, Serazio D 2024 Measurement 233 114747Google Scholar

    [33]

    段梅梅, 赵双双, 徐晴, 王磊, 贾正森, 黄洪涛, 潘仙林 2022 电测与仪表 59 100Google Scholar

    Duan M M, Zhao S S, Xu Q, Wang L, Jia Z S, Huang H T, Pan X L 2022 Electr. Meas. Instrum. 59 100Google Scholar

    [34]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [35]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412Google Scholar

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412Google Scholar

    [36]

    Hilgenkamp H, Mannhart J 2002 Rev. Mod. Phys. 74 485Google Scholar

    [37]

    Hamilton C A, Burroughs C J, Benz S P, Kinard J R 1997 IEEE Trans. Instrum. Meas. 46 224Google Scholar

    [38]

    Chaudhari P, Mannhart J, Dimos D, Tsuei C C, Chi J, Oprysko M M, Scheuermann M 1988 Phys. Rev. Lett. 60 1653Google Scholar

    [39]

    Klushin A M, Prusseit W, Sodtke E, Borovitskii S I, Amatuni L E, Kohlstedt H 1996 Appl. Phys. Lett. 69 1634Google Scholar

    [40]

    Klushin A M, Weber C, Darula M, Semerad R, Prusseit W, Kohlstedt H, Braginski A I 1998 Supercond. Sci. Technol. 11 609Google Scholar

    [41]

    Klushin A M, Behr R, Numssen K, Siegel M, Niemeyer J 2002 Appl. Phys. Lett. 80 1972Google Scholar

    [42]

    Khorshev S K, Pashkovsky A I, Subbotin A N, Rogozhkina N V, Gryaznov Y M, Levichev M Y, Pestov E E, Galin M A, Maksimov V Y, Zhezlov D A, Katkov A S, Klushin A M 2019 IEEE Trans. Instrum. Meas. 68 2113Google Scholar

    [43]

    Klushin A M, Pestov E E, Galin M A, Levichev M Y 2016 Phys. Solid State 58 2196Google Scholar

    [44]

    Khorshev S K, Pashkovsky A I, Rogozhkina N V, Levichev M Y, Pestov E E, Katkov A S, Behr R, Kohlmann J, Klushin A M 2016 Proceedings of the Conference on Precision Electromagnetic Measurements (CPEM), Ottawa, CANADA, Jul 10–15, 2016 pp1–l2

    [45]

    Jin, Y R, Jia, Q J, Deng H, Wang N, Jiang F Y, Tian Y, Gao M Y, Zheng D N 2015 IEEE Trans. Appl. Supercond. 25 1Google Scholar

    [46]

    Linghu K, Guo Z, Wu Q, Luo W, Nie R, Jin Y, Zheng D, Wang F, Gan Z 2019 IEEE Trans. Appl. Supercond. 29 1Google Scholar

    [47]

    Li Y L, Xu T Q, Wang Y, Wang F R, Gan Z Z 2023 Sensors 23 4434Google Scholar

    [48]

    马平, 姚坤, 谢飞翔, 张升原, 邓鹏, 何东风, 张凡, 刘乐园, 聂瑞娟, 王福仁, 王守证, 戴远东 2002 物理学报 51 224Google Scholar

    Ma P, Yao K, Xie F X, Zhang S Y, Deng P, He D F, Zhang F, Liu L Y, Nie R J, Wang F R, Wang S Z, Dai Y D 2002 Acta Phys. Sin. 51 224Google Scholar

    [49]

    刘新元, 谢柏青, 戴远东, 王福仁, 李壮志, 马平, 谢飞翔, 杨涛, 聂瑞娟 2005 物理学报 54 1937Google Scholar

    Liu X Y, Xie B Q, Dai Y D, Wang F R, Li Z Z, Ma P, Xie F X, Yang T, Nie R J 2005 Acta Phys. Sin. 54 1937Google Scholar

    [50]

    王倩, 马平, 华宁, 陆宏, 唐雪正, 唐发宽 2010 物理学报 59 2882Google Scholar

    Wang Q, Ma P, Hua N, Lu H, Tang X Z, Tang F K 2010 Acta Phys. Sin. 59 2882Google Scholar

    [51]

    Yu M, Geng H F, Hua T, An D Y, Xu W W, Chen Z N, Chen J, Wang H B, Wu P H 2020 Supercond. Sci. Technol. 33 025001Google Scholar

    [52]

    尤立星, 冯一军, 潘俊, 吉争鸣, 周赣东, 康琳, 左景萍, 杨森祖, 吴培亨, 陈国新, 王牧 1999 低温物理学报 21 372Google Scholar

    You L X, Feng Y J, Pan J, Ji Z M, Zhou G D, Kang L, Zuo J P, Yang S Z, Wu P H, Chen G X, Wang M 1999 Chin. J. Low Temp. Phys. 21 372Google Scholar

    [53]

    王争, 岳宏卫, 周铁戈, 赵新杰, 何明, 谢清连, 方兰, 阎少林 2009 物理学报 58 7216Google Scholar

    Wang Z, Yue H W, Zhou T G, Zhao X J, He M, Xie Q L, Fang L, Yan S L 2009 Acta Phys. Sin. 58 7216Google Scholar

    [54]

    王华兵, 许伟伟, 吴培亨 2017 物理 46 528Google Scholar

    Wang H B, Xu W W, Wu P H 2017 Physics 46 528Google Scholar

    [55]

    高吉, 马平, 戴远东 2007 物理 36 869Google Scholar

    Dai Y D, Gao J, Ma P 2007 Physics 36 869Google Scholar

    [56]

    张骏, 张辰, 张焱, 马平, 王越 2015 低温物理学报 37 423

    Zhang J, Zhang C, Zhang Y, Ma P, Wang Y 2015 Chin. J. Low Temp. Phys. 37 423

    [57]

    Xu T Q, Li Y L, Wang H Z, Wang Y, Wang F R, Gan Z Z 2023 Physica C 615 1354390Google Scholar

    [58]

    Klushin A M, Weber C, Borovitskii S I, Starodubrovskii R K, Lauer A, Wolff I, Kohlstedt H 1999 IEEE Trans. Instrum. Meas. 48 274Google Scholar

    [59]

    Rao C N R, Raveau B 1989 Acc. Chem. Res. 22 106Google Scholar

    [60]

    Hao L, Macfarlane J C, Pegrum C M 1996 Supercond. Sci. Technol. 9 678Google Scholar

    [61]

    Hao L, Macfarlane J C 1997 Physica C 292 315Google Scholar

    [62]

    Mcdaniel E B, Gausepohl S C, Li C T, Lee M, Hsu J W P, Rao R A, Eom C B 1997 Appl. Phys. Lett. 70 1882Google Scholar

    [63]

    Klushin A M, Borovitskii S I, Weber C, Sodtke E, Semerad R, Prusseit W, Gelikonova V D, Kohlstedt H 1997 3rd European Conference on Applied Superconductivity (EUCAS), Veldhoven, Netherlands, June 30–July 03, 1997 p587

    [64]

    Tinchev S S 1990 Supercond. Sci. Technol. 3 500Google Scholar

    [65]

    Simon R W, Bulman J B, Burch J F, Coons S B, Daly K P, Dozier W D, Hu R, Lee A E, Luine J A, Platt C E, Schwarzbek S M, Wire M S, Zani M J 1991 IEEE Trans. Magn. 27 3209Google Scholar

    [66]

    Kang D J, Burnell G, Lloyd S J, Speaks R S, Peng N H, Jeynes C, Webb R, Yun J H, Moon S H, Oh B, Tarte E J, Moore D F, Blamire M G 2002 Appl. Phys. Lett. 80 814Google Scholar

    [67]

    Cybart S A, Chen K, Cui Y, Li Q, Xi X X, Dynes R C 2006 Appl. Phys. Lett. 88 012509Google Scholar

    [68]

    Sharafiev A, Malnou M, Feuillet-Palma C, Ulysse C, Wolf T, Couëdo F, Febvre P, Lesueur J, Bergeal N 2018 Supercond. Sci. Technol. 31 035003Google Scholar

    [69]

    Cybart S A, Anton S M, Wu S M, Clarke J, Dynes R C 2009 Nano Lett. 9 3581Google Scholar

    [70]

    Cybart S A, Cho E Y, Wong T J, Wehlin B H, Ma M K, Huynh C, Dynes R C 2015 Nat. Nanotechnol. 10 598Google Scholar

    [71]

    Cho E Y, Zhou Y W, Cho J Y, Cybart S A 2018 Appl. Phys. Lett. 113 022604Google Scholar

    [72]

    Cai H, Lefebvre J C, Li H, Cho E Y, Yoshikawa N, Cybart S A 2024 Appl. Phys. Lett. 124 212601Google Scholar

    [73]

    Li H, Cai H, Sarkar N, Lefebvre J C, Cho E Y, Cybart S A 2024 Appl. Phys. Lett. 124 192603Google Scholar

    [74]

    Lefebvre J C, Cho E Y, Cybart S A 2023 Appl. Phys. Lett. 123 112602Google Scholar

    [75]

    Goteti U S, Cai H, Lefebvre J C, Cybart S A, Dynes R C 2022 Sci. Adv. 8 eabn4485Google Scholar

    [76]

    Cai H, Li H, Cho E Y, Lefebvre J C, Cybart S A 2021 IEEE Trans. Appl. Supercond. 31 7200205Google Scholar

    [77]

    Elswick D, Ananth M, Stern L, Marshman J, Ferranti D, Huynh C 2013 Microsc. Microanal. 19 1304Google Scholar

    [78]

    Chen Z W, Li Y L, Zhu R, Xu J, Xu T Q, Yin D L, Cai X W, Wang Y, Lu J M, Zhang Y, Ma P 2022 Chin. Phys. Lett. 39 077402Google Scholar

    [79]

    Zaluzhnyy I A, Goteti U, Stoychev B K, Basak R, Lamb E S, Kisiel E, Zhou T, Cai Z, Holt M V, Beeman J W, Cho E Y, Cybart S, Shpyrko O G, Dynes R, Frano A 2024 ACS Appl. Nano Mater. 7 15943Google Scholar

    [80]

    Graser S, Hirschfeld P J, Kopp T, Gutser R, Andersen B M, Mannhart J 2010 Nat. Phys. 6 609Google Scholar

    [81]

    Yin D L, Cai X W, Xu T Q, Sun R N, Chen Z W, Han Y, Tian L F, Wang Y, Zhang Y, Gan Z Z 2024 Physica C 623 1354532Google Scholar

    [82]

    Chen Z W, Zhang Y, Ma P, Xu Z T, Li Y L, Wang Y, Lu J M, Ma Y W, Gan Z Z 2024 Chin. Phys. B 33 047405Google Scholar

    [83]

    Wang X, Chen F, Lin Z, Tian S, Li C, Kornev V, Kolotinskiy N 2024 Electromagn. Sci. 2 1Google Scholar

    [84]

    Kasaei L, Melbourne T, Li M J, Manichev V, Qin F, Hijazi H, Feldman L C, Gustafsson T, Davidson B A, Xi X X, Chen K 2019 IEEE Trans. Appl. Supercond. 29 1102906Google Scholar

    [85]

    Karrer M, Wurster K, Linek J, Meichsner M, Kleiner R, Goldobin E, Koelle D 2024 Phys. Rev. Appl. 21 014065Google Scholar

  • 图 1  约瑟夫森结的示意图

    Fig. 1.  Schematic representation of a Josephson junction.

    图 2  相位粒子在约瑟夫森势阱中运动的示意图 (a)随着I增大, 约瑟夫森势阱逐渐倾斜, 相位粒子滑动到下一个极小值处; (b)随着I减小, 约瑟夫森势阱恢复水平, 相位粒子在一个局部极小值上振荡

    Fig. 2.  Schematic diagram of the motion of phase particle in the Josephson potential well: (a) As I increases, the Josephson potential well gradually tilts, and the phase particle slides to the next minimum; (b) as I decreases, the Josephson potential well returns, and the phase particle oscillates at a new local minima.

    图 3  N4-21量子电压的桌面测控部分, 包括: 1. 制冷模块, 2. 测试模块, 3. 控制与电源模块, 4. 电脑[42]

    Fig. 3.  Photo of the cryocooler-based table top Josephson voltage standard N4-21. 1. cryocooler unit, 2. measuring unit, 3. control and power supply unit and 4. laptop [42].

    图 4  双晶晶界约瑟夫森结列拓扑结构微观结构图[43], 该串联阵列由一条垂直穿过晶界的曲折线连接而成. 图中标记1为双梳齿结构, 它们构成了一个半波长谐振器. 中间的虚线表示晶界, 在该处形成晶界结[43]

    Fig. 4.  Schematic representation of the topology of a chain of bi-crystal Josephson junctions. The array is connected by a meandering line passing vertically through the grain boundary. Label 1 indicates the double comb tooth structure, which constitutes a half wavelength resonator. The position of grain boundaries is indicated by the dashed line[43]

    图 5  (a) 161个串联双晶结在77 K时, 75.2 GHz微波辐照下的伏安特性曲线; (b)子阵列伏安特性曲线中在12.5 mV电压处的台阶[42]

    Fig. 5.  (a) Current-voltage characteristic of the HTS array containing 161 junctions under irradiation at frequency 75.2 GHz; (b) current-voltage trace of step at approximately 12.5 mV of the sub array[42].

    图 6  聚焦氦离子束辐照写入超导约瑟夫森结的示意图[78]

    Fig. 6.  Schematic representation of a focused helium ion beam creating a Josephson junction[78].

    图 7  (a)聚焦氦离子束制备阵列的光学显微镜图, 周围是电极, 连接了中间的弯曲微带线[84]; (b)阵列的三个分支, 黑色代表了超导薄膜上蒸镀的金[84]; (c)氦离子显微镜成像模式下的100 nm间距结阵放大图[84]

    Fig. 7.  (a) Optical image of the array pattern. Large bonding pads attached to a centered meandering microstrip[84]. (b) Three branches of the meander are enlarged. Dark color lines are Au covered Superconducting film[84]. (c) Zoomed view of single tracks of He+ irradiation at 100 nm inter-spacing imaged in HIM[84].

    图 8  T = 24 K时的I-V特性 (a)在不同微波功率下无微波辐射和微波辐射(f = 11.79 GHz)的单结[84]; (b)在不同微波功率下无微波辐射和有微波辐射(f = 11.76 GHz)的50个串联结阵列, 其中台阶的相邻步长之间的电压是单个结的60倍[84]; (c)在不同输入功率电平下无微波辐射和有微波辐射(f = 12.35 GHz)的60个结串联的阵列, 其中台阶的相邻步长之间的电压是单个结的60倍[84]

    Fig. 8.  Current-voltage characteristics at T = 24 K for (a) single junction without and with microwave radiation of f = 11.79 GHz at different input power levels[84]. (b) 50-JJ series array without and with microwave radiation of f = 11.76 GHz at different input power levels. The space between adjacent steps in voltage is 50 times of that for an individual junction[84]. (c) 60-JJ series array without and with microwave radiation of f = 12.35 GHz at different input power levels. The space between adjacent steps in voltage is 60 times of that for an individual junction[84].

  • [1]

    Josephson B D 1962 Phys. Lett. 1 251Google Scholar

    [2]

    Clarke J, Braginski A I 2003 The SQUID handbook (Volume II. ed.) (Weinheim: Wiley-VCH

    [3]

    Hamilton C A 2000 Rev. Sci. Instrum. 71 3611Google Scholar

    [4]

    Kohlmann J, Behr R, Funck T 2003 Meas. Sci. Technol. 14 1216Google Scholar

    [5]

    Shapiro S 1963 Phys. Rev. Lett. 11 80Google Scholar

    [6]

    Klushin A M, Lesueur J, Kampik M, Raso F, Sosso A, Khorshev S K, Bergeal N, Couëdo F, Feuillet-Palma C, Durandetto P, Grzenik M, Kubiczek K, Musiol K, Skorkowski A 2020 IEEE Instrum. Meas. Mag. 23 4Google Scholar

    [7]

    Mccumber D E 1968 J. Appl. Phys. 39 3113Google Scholar

    [8]

    Jain A K, Lukens J E, Tsai J S 1987 Phys. Rev. Lett. 58 1165Google Scholar

    [9]

    Degennes P G 1964 Rev. Mod. Phys. 36 225Google Scholar

    [10]

    Gurvitch M, Washington M A, Huggins H A 1983 Appl. Phys. Lett. 42 472Google Scholar

    [11]

    Niemeyer J, Hinken J H, Kautz R L 1984 Appl. Phys. Lett. 45 478Google Scholar

    [12]

    Primary Voltage Standard Josephson Junction Arrays, Hypres https://www.hypres.com/products/ [2024-8-7]

    [13]

    Schulze H, Behr R, Muller F, Niemeyer J 1998 Appl. Phys. Lett. 73 996Google Scholar

    [14]

    Schulze H, Behr R, Kohlmann J, Müller F, Niemeyer J 2000 Supercond. Sci. Technol. 13 1293Google Scholar

    [15]

    Zhong Q, Zhong Y, He Q, Zhang J 2008 Cryog. Supercond. 36 32Google Scholar

    [16]

    SRI 6000 Series Programmable Josephson Voltage Standard (PJVS), NIST https://www.nist.gov/sri/standard-reference-instruments/ [2024-8-7]

    [17]

    AC Quantum Voltmeter Cooler, Supracon http://www.supracon.com/en/ [2024-8-7]

    [18]

    Rüfenacht A, Flowers-Jacobs N E, Benz S P 2018 Metrologia 55 S152Google Scholar

    [19]

    Dresselhaus P D, Elsbury M M, Olaya D, Burroughs C J, Benz S P 2011 IEEE Trans. Appl. Supercond. 21 693Google Scholar

    [20]

    Mueller F, Behr R, Weimann T, Palafox L, Olaya D, Dresselhaus P D, Benz S P 2009 IEEE Trans. Appl. Supercond. 19 981Google Scholar

    [21]

    Yamamori H, Ishizaki M, Shoji A, Dresselhaus P D, Benz S P 2006 Appl. Phys. Lett. 88 042503Google Scholar

    [22]

    曹文会, 李劲劲, 钟青, 郭小玮, 贺青, 迟宗涛 2012 物理学报 61 170304Google Scholar

    Cao W W, Li J J, Zhong Q, Guo X W, He Q, Chi Z T 2012 Acta Phys. Sin. 61 170304Google Scholar

    [23]

    Cao W H, Li J J, Zhong Y, He Q 2015 Chin. Phys. B 24 127402Google Scholar

    [24]

    Yu H F, Cao W H, Zhu X B, Yang H F, Yu H W, Ren Y F, Gu C Z, Chen G H, Zhao S P 2008 Chin. Phys. B 17 3083Google Scholar

    [25]

    Cao W H, Yu H F, Tian Y, Yu H W, Ren Y F, Chen G H, Zhao S P 2009 Chin. Phys. B 18 5044Google Scholar

    [26]

    Xu W N, Ying L L, Lin Q, Ren J, Wang Z 2021 Supercond. Sci. Technol. 34 085002Google Scholar

    [27]

    Li X, Tan J R, Zheng K M, Zhang L B, Zhang L J, He W J, Huang P W, Li H C, Zhang B, Chen Q, Ge R, Guo S Y, Huang T, Jia X Q, Zha Q Y, Tu X C, Kang L, Chen J, Wu P H 2020 Photonics Res. 8 637Google Scholar

    [28]

    李春光, 王佳, 吴云, 王旭, 孙亮, 董慧, 高波, 李浩, 尤立星, 林志荣, 任洁, 李婧, 张文, 贺青, 王轶文, 韦联福, 孙汉聪, 王华兵, 李劲劲, 屈继峰 2021 物理学报 70 018501Google Scholar

    Li C G, Wang J, Wu Y, Wang X, Sun L, Dong H, Gao B, Li H, You L X, Lin Z R, Ren J, Li J, Zhang W, He Q, Wang Y W, Wei L F, Sun H C, Wang H B, Li J J, Qu J F 2021 Acta Phys. Sin. 70 018501Google Scholar

    [29]

    李劲劲 2021 科技成果管理与研究 16 72Google Scholar

    Li J J 2021 Management and Research on Scientific & Technological Achievements 16 72Google Scholar

    [30]

    朱珠, 康焱, 王路, 胡毅飞 2018 宇航计测技术 38 12Google Scholar

    Zhu Z, Kang Y, Wang L, Hu Y F 2018 J Astronaut. Metrol. Meas. 38 12Google Scholar

    [31]

    李红晖, 王曾敏, 徐晴, 田正其, 段梅梅, 王磊 2023 计量学报 44 1564Google Scholar

    Li H H, Wang Z M, Xu Q, Tian Z Q, Duan M M, Wang L 2023 Acta. Metrol. Sin. 44 1564Google Scholar

    [32]

    Trinchera B, Durandetto P, Serazio D 2024 Measurement 233 114747Google Scholar

    [33]

    段梅梅, 赵双双, 徐晴, 王磊, 贾正森, 黄洪涛, 潘仙林 2022 电测与仪表 59 100Google Scholar

    Duan M M, Zhao S S, Xu Q, Wang L, Jia Z S, Huang H T, Pan X L 2022 Electr. Meas. Instrum. 59 100Google Scholar

    [34]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [35]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412Google Scholar

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412Google Scholar

    [36]

    Hilgenkamp H, Mannhart J 2002 Rev. Mod. Phys. 74 485Google Scholar

    [37]

    Hamilton C A, Burroughs C J, Benz S P, Kinard J R 1997 IEEE Trans. Instrum. Meas. 46 224Google Scholar

    [38]

    Chaudhari P, Mannhart J, Dimos D, Tsuei C C, Chi J, Oprysko M M, Scheuermann M 1988 Phys. Rev. Lett. 60 1653Google Scholar

    [39]

    Klushin A M, Prusseit W, Sodtke E, Borovitskii S I, Amatuni L E, Kohlstedt H 1996 Appl. Phys. Lett. 69 1634Google Scholar

    [40]

    Klushin A M, Weber C, Darula M, Semerad R, Prusseit W, Kohlstedt H, Braginski A I 1998 Supercond. Sci. Technol. 11 609Google Scholar

    [41]

    Klushin A M, Behr R, Numssen K, Siegel M, Niemeyer J 2002 Appl. Phys. Lett. 80 1972Google Scholar

    [42]

    Khorshev S K, Pashkovsky A I, Subbotin A N, Rogozhkina N V, Gryaznov Y M, Levichev M Y, Pestov E E, Galin M A, Maksimov V Y, Zhezlov D A, Katkov A S, Klushin A M 2019 IEEE Trans. Instrum. Meas. 68 2113Google Scholar

    [43]

    Klushin A M, Pestov E E, Galin M A, Levichev M Y 2016 Phys. Solid State 58 2196Google Scholar

    [44]

    Khorshev S K, Pashkovsky A I, Rogozhkina N V, Levichev M Y, Pestov E E, Katkov A S, Behr R, Kohlmann J, Klushin A M 2016 Proceedings of the Conference on Precision Electromagnetic Measurements (CPEM), Ottawa, CANADA, Jul 10–15, 2016 pp1–l2

    [45]

    Jin, Y R, Jia, Q J, Deng H, Wang N, Jiang F Y, Tian Y, Gao M Y, Zheng D N 2015 IEEE Trans. Appl. Supercond. 25 1Google Scholar

    [46]

    Linghu K, Guo Z, Wu Q, Luo W, Nie R, Jin Y, Zheng D, Wang F, Gan Z 2019 IEEE Trans. Appl. Supercond. 29 1Google Scholar

    [47]

    Li Y L, Xu T Q, Wang Y, Wang F R, Gan Z Z 2023 Sensors 23 4434Google Scholar

    [48]

    马平, 姚坤, 谢飞翔, 张升原, 邓鹏, 何东风, 张凡, 刘乐园, 聂瑞娟, 王福仁, 王守证, 戴远东 2002 物理学报 51 224Google Scholar

    Ma P, Yao K, Xie F X, Zhang S Y, Deng P, He D F, Zhang F, Liu L Y, Nie R J, Wang F R, Wang S Z, Dai Y D 2002 Acta Phys. Sin. 51 224Google Scholar

    [49]

    刘新元, 谢柏青, 戴远东, 王福仁, 李壮志, 马平, 谢飞翔, 杨涛, 聂瑞娟 2005 物理学报 54 1937Google Scholar

    Liu X Y, Xie B Q, Dai Y D, Wang F R, Li Z Z, Ma P, Xie F X, Yang T, Nie R J 2005 Acta Phys. Sin. 54 1937Google Scholar

    [50]

    王倩, 马平, 华宁, 陆宏, 唐雪正, 唐发宽 2010 物理学报 59 2882Google Scholar

    Wang Q, Ma P, Hua N, Lu H, Tang X Z, Tang F K 2010 Acta Phys. Sin. 59 2882Google Scholar

    [51]

    Yu M, Geng H F, Hua T, An D Y, Xu W W, Chen Z N, Chen J, Wang H B, Wu P H 2020 Supercond. Sci. Technol. 33 025001Google Scholar

    [52]

    尤立星, 冯一军, 潘俊, 吉争鸣, 周赣东, 康琳, 左景萍, 杨森祖, 吴培亨, 陈国新, 王牧 1999 低温物理学报 21 372Google Scholar

    You L X, Feng Y J, Pan J, Ji Z M, Zhou G D, Kang L, Zuo J P, Yang S Z, Wu P H, Chen G X, Wang M 1999 Chin. J. Low Temp. Phys. 21 372Google Scholar

    [53]

    王争, 岳宏卫, 周铁戈, 赵新杰, 何明, 谢清连, 方兰, 阎少林 2009 物理学报 58 7216Google Scholar

    Wang Z, Yue H W, Zhou T G, Zhao X J, He M, Xie Q L, Fang L, Yan S L 2009 Acta Phys. Sin. 58 7216Google Scholar

    [54]

    王华兵, 许伟伟, 吴培亨 2017 物理 46 528Google Scholar

    Wang H B, Xu W W, Wu P H 2017 Physics 46 528Google Scholar

    [55]

    高吉, 马平, 戴远东 2007 物理 36 869Google Scholar

    Dai Y D, Gao J, Ma P 2007 Physics 36 869Google Scholar

    [56]

    张骏, 张辰, 张焱, 马平, 王越 2015 低温物理学报 37 423

    Zhang J, Zhang C, Zhang Y, Ma P, Wang Y 2015 Chin. J. Low Temp. Phys. 37 423

    [57]

    Xu T Q, Li Y L, Wang H Z, Wang Y, Wang F R, Gan Z Z 2023 Physica C 615 1354390Google Scholar

    [58]

    Klushin A M, Weber C, Borovitskii S I, Starodubrovskii R K, Lauer A, Wolff I, Kohlstedt H 1999 IEEE Trans. Instrum. Meas. 48 274Google Scholar

    [59]

    Rao C N R, Raveau B 1989 Acc. Chem. Res. 22 106Google Scholar

    [60]

    Hao L, Macfarlane J C, Pegrum C M 1996 Supercond. Sci. Technol. 9 678Google Scholar

    [61]

    Hao L, Macfarlane J C 1997 Physica C 292 315Google Scholar

    [62]

    Mcdaniel E B, Gausepohl S C, Li C T, Lee M, Hsu J W P, Rao R A, Eom C B 1997 Appl. Phys. Lett. 70 1882Google Scholar

    [63]

    Klushin A M, Borovitskii S I, Weber C, Sodtke E, Semerad R, Prusseit W, Gelikonova V D, Kohlstedt H 1997 3rd European Conference on Applied Superconductivity (EUCAS), Veldhoven, Netherlands, June 30–July 03, 1997 p587

    [64]

    Tinchev S S 1990 Supercond. Sci. Technol. 3 500Google Scholar

    [65]

    Simon R W, Bulman J B, Burch J F, Coons S B, Daly K P, Dozier W D, Hu R, Lee A E, Luine J A, Platt C E, Schwarzbek S M, Wire M S, Zani M J 1991 IEEE Trans. Magn. 27 3209Google Scholar

    [66]

    Kang D J, Burnell G, Lloyd S J, Speaks R S, Peng N H, Jeynes C, Webb R, Yun J H, Moon S H, Oh B, Tarte E J, Moore D F, Blamire M G 2002 Appl. Phys. Lett. 80 814Google Scholar

    [67]

    Cybart S A, Chen K, Cui Y, Li Q, Xi X X, Dynes R C 2006 Appl. Phys. Lett. 88 012509Google Scholar

    [68]

    Sharafiev A, Malnou M, Feuillet-Palma C, Ulysse C, Wolf T, Couëdo F, Febvre P, Lesueur J, Bergeal N 2018 Supercond. Sci. Technol. 31 035003Google Scholar

    [69]

    Cybart S A, Anton S M, Wu S M, Clarke J, Dynes R C 2009 Nano Lett. 9 3581Google Scholar

    [70]

    Cybart S A, Cho E Y, Wong T J, Wehlin B H, Ma M K, Huynh C, Dynes R C 2015 Nat. Nanotechnol. 10 598Google Scholar

    [71]

    Cho E Y, Zhou Y W, Cho J Y, Cybart S A 2018 Appl. Phys. Lett. 113 022604Google Scholar

    [72]

    Cai H, Lefebvre J C, Li H, Cho E Y, Yoshikawa N, Cybart S A 2024 Appl. Phys. Lett. 124 212601Google Scholar

    [73]

    Li H, Cai H, Sarkar N, Lefebvre J C, Cho E Y, Cybart S A 2024 Appl. Phys. Lett. 124 192603Google Scholar

    [74]

    Lefebvre J C, Cho E Y, Cybart S A 2023 Appl. Phys. Lett. 123 112602Google Scholar

    [75]

    Goteti U S, Cai H, Lefebvre J C, Cybart S A, Dynes R C 2022 Sci. Adv. 8 eabn4485Google Scholar

    [76]

    Cai H, Li H, Cho E Y, Lefebvre J C, Cybart S A 2021 IEEE Trans. Appl. Supercond. 31 7200205Google Scholar

    [77]

    Elswick D, Ananth M, Stern L, Marshman J, Ferranti D, Huynh C 2013 Microsc. Microanal. 19 1304Google Scholar

    [78]

    Chen Z W, Li Y L, Zhu R, Xu J, Xu T Q, Yin D L, Cai X W, Wang Y, Lu J M, Zhang Y, Ma P 2022 Chin. Phys. Lett. 39 077402Google Scholar

    [79]

    Zaluzhnyy I A, Goteti U, Stoychev B K, Basak R, Lamb E S, Kisiel E, Zhou T, Cai Z, Holt M V, Beeman J W, Cho E Y, Cybart S, Shpyrko O G, Dynes R, Frano A 2024 ACS Appl. Nano Mater. 7 15943Google Scholar

    [80]

    Graser S, Hirschfeld P J, Kopp T, Gutser R, Andersen B M, Mannhart J 2010 Nat. Phys. 6 609Google Scholar

    [81]

    Yin D L, Cai X W, Xu T Q, Sun R N, Chen Z W, Han Y, Tian L F, Wang Y, Zhang Y, Gan Z Z 2024 Physica C 623 1354532Google Scholar

    [82]

    Chen Z W, Zhang Y, Ma P, Xu Z T, Li Y L, Wang Y, Lu J M, Ma Y W, Gan Z Z 2024 Chin. Phys. B 33 047405Google Scholar

    [83]

    Wang X, Chen F, Lin Z, Tian S, Li C, Kornev V, Kolotinskiy N 2024 Electromagn. Sci. 2 1Google Scholar

    [84]

    Kasaei L, Melbourne T, Li M J, Manichev V, Qin F, Hijazi H, Feldman L C, Gustafsson T, Davidson B A, Xi X X, Chen K 2019 IEEE Trans. Appl. Supercond. 29 1102906Google Scholar

    [85]

    Karrer M, Wurster K, Linek J, Meichsner M, Kleiner R, Goldobin E, Koelle D 2024 Phys. Rev. Appl. 21 014065Google Scholar

  • [1] 张定, 朱玉莹, 汪恒, 薛其坤. 转角铜氧化物中的约瑟夫森效应. 物理学报, 2023, 72(23): 237402. doi: 10.7498/aps.72.20231815
    [2] 徐磊, 李沛岭, 吕昭征, 沈洁, 屈凡明, 刘广同, 吕力. 马约拉纳零能模的输运探测. 物理学报, 2023, 72(17): 177401. doi: 10.7498/aps.72.20230951
    [3] 初纯光, 王安琦, 廖志敏. 拓扑半金属-超导体异质结的约瑟夫森效应. 物理学报, 2023, 72(8): 087401. doi: 10.7498/aps.72.20230397
    [4] 韩金舸, 欧阳鹏辉, 李恩平, 王轶文, 韦联福. 超导约瑟夫森结物理参数的实验推算. 物理学报, 2021, 70(17): 170304. doi: 10.7498/aps.70.20210393
    [5] 闻海虎. 高温超导体磁通钉扎和磁通动力学研究简介. 物理学报, 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [6] 金魁, 吴颉. 高温超导体组合薄膜和相图表征高通量方法. 物理学报, 2021, 70(1): 017403. doi: 10.7498/aps.70.20202102
    [7] 郑东宁. 超导量子干涉器件. 物理学报, 2021, 70(1): 018502. doi: 10.7498/aps.70.20202131
    [8] 孙建平, Prashant Shahi, 周花雪, 倪顺利, 王少华, 雷和畅, 王铂森, 董晓莉, 赵忠贤, 程金光. 插层FeSe高温超导体的高压研究进展. 物理学报, 2018, 67(20): 207404. doi: 10.7498/aps.67.20181319
    [9] 金霞, 董正超, 梁志鹏, 仲崇贵. 磁性d波超导/铁磁/磁性d波超导结中的约瑟夫森效应. 物理学报, 2013, 62(4): 047401. doi: 10.7498/aps.62.047401
    [10] 曹文会, 李劲劲, 钟青, 郭小玮, 贺青, 迟宗涛. 用于电压基准的Nb/NbxSi1-x/Nb约瑟夫森单结的研制. 物理学报, 2012, 61(17): 170304. doi: 10.7498/aps.61.170304
    [11] 岳宏卫, 王争, 樊彬, 宋凤斌, 游峰, 赵新杰, 何明, 方兰, 阎少林. 高温超导双晶约瑟夫森结阵列毫米波相干辐射. 物理学报, 2010, 59(8): 5755-5758. doi: 10.7498/aps.59.5755
    [12] 贺丽, 胡翔, 尹澜, 许恒毅, 徐晓林, 郭建栋, 李传义, 尹道乐. 高温超导体霍尔电阻和霍尔角在涡旋玻璃相变附近的普适标度律及统一霍尔电阻方程. 物理学报, 2009, 58(1): 417-420. doi: 10.7498/aps.58.417
    [13] 尤育新, 赵志刚, 王 进, 刘 楣. 高温超导体中约瑟夫森涡旋流阻的振荡效应. 物理学报, 2008, 57(11): 7252-7256. doi: 10.7498/aps.57.7252
    [14] 谭明秋, 陶向明, 徐小军, 何军辉, 叶高翔. MgCNi3的电子结构、光学性质与超导电性. 物理学报, 2003, 52(2): 463-467. doi: 10.7498/aps.52.463
    [15] 胡立发, ASulpice, PDixador, 张平祥, 李成山, 纪平, 滕鑫康, 汪金荣, 冯勇, 周廉. Bi2223带材的临界电流及交流损耗研究. 物理学报, 2002, 51(8): 1826-1831. doi: 10.7498/aps.51.1826
    [16] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [17] 谭明秋, 陶向明. 高温超导体MgB2的电子结构研究. 物理学报, 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
    [18] 胡立发, 周廉, 张平祥, 王金星. 高温超导体的磁化与磁滞损耗. 物理学报, 2001, 50(7): 1359-1365. doi: 10.7498/aps.50.1359
    [19] 黄洪斌. 超导体中库珀对的SU(2)与Glauber相干态——库珀对与约瑟夫森超流性的量子特性研究. 物理学报, 1991, 40(9): 1402-1410. doi: 10.7498/aps.40.1402
    [20] 刘福绥. 超导桥约瑟夫森效应的微观理论. 物理学报, 1977, 26(5): 411-416. doi: 10.7498/aps.26.411
计量
  • 文章访问数:  454
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-08
  • 修回日期:  2025-03-03
  • 上网日期:  2025-03-06

/

返回文章
返回