搜索

x
中国物理学会期刊

EAST上基于平衡中性束注入方法的L模等离子体自发扭矩分布实验研究

CSTR: 32037.14.aps.74.20241462

Experimental study of intrinsic torque distribution of L-mode plasma based on balanced neutral beam injection on EAST

CSTR: 32037.14.aps.74.20241462
PDF
HTML
导出引用
  • 等离子体旋转及其剪切是影响聚变装置的关键参数之一, 等离子体旋转的驱动和控制对未来聚变堆的稳定运行和约束改善都具有很大意义. 目前靠外部动量注入的方式不足以在满足Q大于5的同时抑制电阻壁模不稳定性. 因此, 有必要对不依赖外部动量注入的等离子体自发旋转展开实验研究. 为了更好地预测未来聚变装置中自发旋转速度的大小, 本文在东方超环托卡马克(EAST)上开展了残余应力与无量纲参数的定标研究, 利用平衡中性束的方法进行了多次自发扭矩的实验测量, 为未来托卡马克装置中等离子体自发旋转的预测提供实验依据. 实验定标结果表明, 芯部残余应力与\rho _\ast ^-1.80\pm1.26相关, 而边界残余应力的定标则显示出对\rho _\ast ^1.26\pm0.63的依赖性, 这表明随着装置尺寸的增大, 未来托卡马克聚变堆中芯部的残余应力可能会增大, 而边界残余应力则减小. 芯部与边界残余应力的定标结果差异表明, 在边界区域刮削层区残余应力的产生过程中, 有\boldsymbolE\times\boldsymbolB流剪切以外的对称性破坏机制起主导作用. 在自发扭矩与\nu _\ast 的定标之间发现芯部自发扭矩依赖于\nu _\ast ^0.21\pm0.18. 结合芯部自发扭矩与归一化旋转半径、归一化碰撞率的定标结果, 得到芯部自发扭矩的定标律为\rho _\ast ^-1.39\pm0.71\nu _\ast ^-0.11\pm0.10. 使用ITER氘-氚混合运行方案中的等离子体参数预测得到芯部自发扭矩大小为(1.0\pm6.3) N\cdotm, 远小于之前DIII-D预测结果.

     

    Plasma rotation and its shear are key parameters influencing the performance of fusion devices. The prediction and control of plasma rotation velocity are of great significance for improving the stable operation and confinement of future fusion reactors. External momentum injection methods are insufficient to suppress resistive wall mode instability while achieving Q greater than 5 in international thermonuclear experimental reactor (ITER). Therefore, it is necessary to conduct experimental research on intrinsic plasma rotation that does not rely on external momentum injection. To better predict the magnitude of intrinsic rotation velocity in future fusion devices, we conduct an experimental study on the scaling of residual stress and dimensionless parameters on EAST. Using the balanced neutral beam, multiple measurements of intrinsic torque are performed, providing experimental basis for predicting the intrinsic rotation in future tokamak devices. The scaling results indicate that the core residual stress is dependent on \rho_\ast^-1.80\pm1.26, while the scaling of edge residual stress shows an opposite trend with \rho _\ast ^1.26\pm0.63. This suggests that as the device size increases, the core residual stress in future large devices can increase, while the edge residual stress can decrease. The difference in scaling results between the core and edge residual stress indicates that in the edge region, the symmetry-breaking mechanism other than \boldsymbolE\times\boldsymbolB flow shear dominates the generation of residual stress in the scrape-off layer. A relationship is found between intrinsic torque and \nu _\ast , revealing that the core intrinsic torque depends on \nu _\ast ^-0.21\pm0.18. Combining the scaling results of core intrinsic torque with the gyroradius and normalized collisionality, the scaling law for core intrinsic torque is obtained to be \rho _\ast ^-1.39\pm0.71\nu _\ast ^0.11\pm0.10. Using plasma parameters of ITER operation scenario 1, the core intrinsic torque in future ITER plasma is predicted to be (1.0\pm6.3)~\mathrmN\cdot \mathrmm, which is much smaller than the predicted magnitude at DIII-D.

     

    目录

    /

    返回文章
    返回