搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于流形上概率学习的爆轰不确定度分析

梁霄 王言金 王瑞利

引用本文:
Citation:

基于流形上概率学习的爆轰不确定度分析

梁霄, 王言金, 王瑞利
cstr: 32037.14.aps.74.20241501

Uncertainty analysis of detonation based on probability learning on manifold

LIANG Xiao, WANG Yanjin, WANG Ruili
cstr: 32037.14.aps.74.20241501
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 爆轰实验由于操作风险高、样品制备和测试成本大等特征, 导致实验样本稀疏, 给标定待测物理量的概率分布和使用机器学习方法带来巨大的挑战. 流形上的概率学习(probability learning on manifold, PLoM)能生成丰富的、符合实用常识的、遵循实验数据物理机理的样本, 成为处理小样本的有效工具. 首先将炸药PBX9502的含有多物理属性实验数据做缩比变换, 然后, 使用主成分分析将缩比数据规范化, 并将规范化矩阵的分量作为训练集. 进而, 使用改进的多元Gauss核密度估计法表征训练集的先验概率. 紧接着利用耗散映射提炼基于训练集的非线性流形. 具体而言, 通过转移矩阵的第一个特征值和对应的特征向量构造耗散基函数和耗散映射. 其次, 将训练集作为Wiener过程驱动的Hamilton系统的初值, 先验概率作为不变测度构造Itô-MCMC随机数生成器, Störmer-Verlet格式用以求解随机耗散Hamilton方程. 最后, 采用反演变换, 实现学习集的扩容. 结果发现, PLoM能生成符合工业生产和高精度模拟需求的密度和爆速的随机数. 利用学习集导出炸药的密度和爆速服从仿射变换, 密度和爆压服从非线性关系, 密度的微小波动会引起爆速和爆压的剧烈的变化. 比较学习集的变异系数, 还发现爆压离散程度最高, 与已有研究结果相符. 所用方法具备普适性, 能推广到其他的爆轰系统.
    Detonation test is affected by small experimental datasets due to high risk of implementation and the huge cost of sample production and measurement. The major challenges of limited data consist in constructing the probability distribution of physical quantities and application of machine learning. Probability learning on manifold (PLoM) can generate a large number of implementations that are consistent with practical common knowledge, while preserving potential physical mechanism these generated samples. So PLoM is viewed as an efficient tool of tackling small samples. To begin with, experimental data are assumed to be concentrated on an unknown subset of Euclidean space and can be treated as the sampling of random vector to be determined. Meanwhile, experimental problem is solved in the framework of matrix and the scaling transformation is conducted on the datasets of PBX9502 with multi-physics attributes. Then the principal component analysis is utilized to normalize the scaling matrix, and the normalization matrix is labeled as training sets. Moreover, the altered multi-dimensional Gaussian kernel density estimation is utilized for estimating the probability distribution of training set. Furthermore, diffusion map is used to discover and characterize the geometry and structure of dataset. In other words, nonlinear manifold based on the training set is constructed through diffusion map. Specifically, the first eigenvalue and corresponding eigenvector is related to the construction of diffusion basis and diffusion maps. Further, Itô-MCMC sampler is associated with dissipative Hamilton system driven by Wiener process, for which the initial condition is set to be training set, and prior probability is conceived as invariant measure. Störmer-Verlet scheme is used for solving the stochastic dissipative Hamilton equations. Finally, additional realizations of learning dataset are fulfilled through the inversion transformation. The result shows that random number generated from PLoM satisfies the requirements of industrial and high fidelity simulation. The 95% confidence interval of density is included in the range calibrated by Los Alamos National Laboratory. And the value of detonation velocity calibrated by Prof. Chengwei Sun [Sun C W, Wei Y Z, Zhou Z K 2000 Applied Detonation Physics (Beijing: National Defense Industry Press) p224] also falls into 95% confidence interval of detonation velocity generated by PLoM. It is also deduced from the learning set that density and detonation velocity satisfies the affine transformation. Furthermore, detonation pressure has nonlinear relationship with density. Tiny variation of density can lead to magnificent fluctuation of detonation pressure and detonation velocity. Detonation pressure has the largest discreetness in all the physical quantities through the comparison of variation coefficients of learning set, which coincides with the existing research results. The method used is universal enough and can be extended to other detonation systems.
      通信作者: 梁霄, mathlx@163.com
    • 基金项目: 国家自然科学基金(批准号: 12171047)、国家自然科学基金委-中国工程物理研究院NSAF联合基金(批准号: U2230208)、山东省自然科学基金(批准号: ZR2021BA056)和国家留学基金委(批准号: CSC202308370209)资助的课题.
      Corresponding author: LIANG Xiao, mathlx@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12171047), the National Natural Science Foundation of China - China Academy of Engineering Physics Joint Fund for NSAF (Grant No. U2230208), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021BA056), and China Scholarship Council (Grant No. CSC202308370209).
    [1]

    孙承纬, 卫玉章, 周之奎 2000 应用爆轰物理 (北京: 国防工业出版社)

    Sun C W, Wei Y Z, Zhou Z K 2000 Applied Detonation Physics (Beijing: National Defense Industry Press

    [2]

    Mader C 1979 Numerical Modeling of Detonations (Berkeley: University of California

    [3]

    梁霄, 王瑞利, 胡星志, 陈江涛 2023 爆炸与冲击 43 71Google Scholar

    Liang X, Wang R L, Hu Z X, Chen J T 2023 Explos. Shock. Waves. 43 71Google Scholar

    [4]

    梁霄, 王瑞利 2024 兵工学报 45 1673Google Scholar

    Liang X, Wang R L 2024 Acta. Arma. 45 1673Google Scholar

    [5]

    Liang X, Wang R L 2020 Int. J. Uncertainty. Quantif. 10 83Google Scholar

    [6]

    Bratton R N, Avramova M, Ivanov K 2014 Nucl. Eng. Technol. 46 313Google Scholar

    [7]

    Cartwright K, Pointon T, Oliver B V, Swanekamp S B, Hinshelwood D, Angus J R, Richardson A S, Mosher D 2016 Direct Electron-beam-injection Experiments for Validation of Air-chemistry Models (New Mexico: Sandia National Laboratories) SAND2016-2437C

    [8]

    Los Alamos National Laboratory 2022 Advanced Simulation and Computing Simulation Strategy Report LA-UR-22-25074

    [9]

    胡泽华, 叶涛, 刘雄国, 王佳 2017 物理学报 66 012801Google Scholar

    Hu Z H, Ye T, Liu X G, Wang J 2017 Acta. Phys. Sin. 66 012801Google Scholar

    [10]

    AIAA 1998 Guide for the Verification and Validation of Computational Fluid Dynamics Simulations (AIAA G-077-1998

    [11]

    Clark M A, Kearns K, Overholt J L, Gross K H, Barthelemy B, Reed C 2014 Air Force Research Laboratory Test and Evaluation, Verification and Validation of Autonomous Systems Challenge Exploration Final Report Case Number 88ABW-2014-4063

    [12]

    Hu X Z, Duan Y H, Wang R L, Liang X, Chen J T 2019 J. Verif. Valid. Uncert. 4 021006Google Scholar

    [13]

    张诗琪, 杨化通 2023 物理学报 72 110303Google Scholar

    Zhang S Q, Yang H T 2023 Acta. Phys. Sin. 72 110303Google Scholar

    [14]

    Wishart J, Como S, Forgione U, Weast J, Weston L, Smart A, Nicols G, Ramesh S 2020 SAE Int. J. CAV 3 267Google Scholar

    [15]

    Department of Energy’s NNSA 2005 Holistic, Hierarchical VVUQ as the Scientific Method for PSAAP Report LA-UR-23-32192

    [16]

    Department of Defense 2019 Modeling and Simulation (M&S) Verification, Validation, and Accreditation (VV&A) Recommended Practices Guide (RPG) Core Document: Introduction

    [17]

    Dahm W 2010 Technology Horizons a Vision for Air Force Science & Technology During 2010-2030 Report AF/ST-TR-10-01-PR

    [18]

    Balci O 1994 Ann. Oper. Res. 53 121Google Scholar

    [19]

    Metzger E J, Barton N P, Smedstad O M, Ruston B C, Wallcraft A J, Whitcomb T R, Ridout J A, Franklin D S, Zamudio L, Posey P G, Reynolds C A, Phelps M 2016 Verification and Validation of a Navy ESPC Hindcast with Loosely Coupled data Assimilation American Geophysical Union A41G-0130

    [20]

    American Society of Mechanical Engineers 2022 Verification, Validation, and Uncertainty Quantification Terminology in Computational Modeling and Simulation ASME VVUQ 1-2022

    [21]

    Oberkampf W, Roy C 2010 Verification and Validation in Scientific Computing (Cambridge: Cambridge University Press

    [22]

    Liang X, Wang R L 2019 Def. Technol. 15 398Google Scholar

    [23]

    王言金, 张树道, 李华, 周海兵 2016 物理学报 65 106401Google Scholar

    Wang Y J, Zhang S D, Li H, Zhou H B 2016 Acta. Phys. Sin. 65 106401Google Scholar

    [24]

    Park C, Nili S, Mathew J T, Ouellet F, Koneru R, Kim N, Balachandar S, Haftka R 2021 J. Verif. Valid. Uncert. 6 119007Google Scholar

    [25]

    梁霄, 王瑞利 2017 物理学报 66 116401Google Scholar

    Liang X, Wang R L 2017 Acta. Phys. Sin. 66 116401Google Scholar

    [26]

    Soize C, Ghanem R 2016 J. Comput. Phys. 321 242Google Scholar

    [27]

    Ghanem R, Soize C, Safta C, Huan X, Lacaze G, Oefelein J C, Najm H N 2019 J. Comput. Phys. 399 108930Google Scholar

    [28]

    Capiez-Lernout E, Ezvan O, Soize C 2024 J. Comput. Inf. Sci. Eng. 24 061006Google Scholar

    [29]

    Nespoulous J, Perrin G, Funfschilling C, Soize C 2024 Physics D 457 133977Google Scholar

    [30]

    Capiez-Lernout E, Soize C 2022 Int. J. Non. Linear. Mech. 143 104023Google Scholar

    [31]

    Metropolis N, Ulam S 1949 J. Am. Stat. Assoc. 44 335Google Scholar

    [32]

    Hastings W 1970 Biometrika 109 57Google Scholar

    [33]

    Geman S, Geman D 1984 IEEE Trans. Pattern. Anal. Mach. Intell. 6 721Google Scholar

    [34]

    Campbell A 1984 Pyrotechnics 9 183Google Scholar

    [35]

    Peterson P, Idar D 2005 Propell. Explos. Pyrot. 30 88Google Scholar

    [36]

    Davis W C, Hill L G 2002 12th International Symposium Detonation San Diego, USA, August 11–16, 2002 p220

    [37]

    Handley C, Lambourn B, Whitworth N, James H, Belfield W 2018 Appl. Phys. Rev. 5 011303Google Scholar

    [38]

    Coifman R, Lafon S, Lee A, Maggioni M, Nadler B, Warner F 2005 Proc. Natl. Acad. Sci. USA 102 7426Google Scholar

    [39]

    Hairer E, Lubich C, Wanner G 2002 Geometric Numerical Integration Structure-Preserving Algorithms for Ordinary Differential Equations (Heidelberg: Springer-Verlag

    [40]

    Soize C 2008 Int. J. Numer. Methods Eng. 76 1583Google Scholar

    [41]

    Shannon C 1948 Bell. Syst. Tech. J. 27 623Google Scholar

    [42]

    Gustavsen R, Sheffield S, Alcon R 2006 J. Appl. Phys. 99 114907Google Scholar

  • 图 1  PBX9502炸药密度和爆速图

    Fig. 1.  Scatter plot of density and detonation velocity of explosive PBX 9502.

    图 2  PBX 9502的偏光显微镜图[35]

    Fig. 2.  Polarizing light microscope images of PBX-9502[35].

    图 3  缩比矩阵C特征值

    Fig. 3.  Eigenvalues of scaling matrix C.

    图 4  实验数据导出的训练集${{\boldsymbol{\eta}} _{\text{d}}}$

    Fig. 4.  Training set ${{\boldsymbol{\eta}} _{\text{d}}}$ deduced from experimental data.

    图 5  log10尺度下的转移矩阵的特征值递减分布图

    Fig. 5.  Descending plot of eigenvalues of transition matrix under log10 scale.

    图 6  PLoM生成的4000个样本的学习集

    Fig. 6.  The 4000 additional samples of learning set generated from PLoM.

    图 7  PLoM生成的4000个样本

    Fig. 7.  The 4000 additional samples generated from PLoM.

    图 8  PLoM生成的4000个电子实验数据

    Fig. 8.  The 4000 samples of digital experimental data generated from PLoM.

    图 9  流形上概率学习方法的流程图

    Fig. 9.  Flow chart of PLoM.

    图 10  基于圆柱螺旋曲线的PLoM方法验证图 (a)原始数据; (b)生成数据

    Fig. 10.  Verification of PLoM methodology based on cylindrical helix curve: (a) Original samples; (b) generating data.

    图 11  基于圆锥螺旋曲线的PLoM方法验证图 (a)原始数据; (b)生成数据

    Fig. 11.  Verification of PLoM methodology based on cone helix curve: (a) Original samples; (b) generating data.

    图 12  PBX-9502密度和爆速的概率密度函数 (a)密度; (b)爆速

    Fig. 12.  PDF of detonation velocity of PBX-9502: (a) Density; (b) detonation velocity.

    图 13  QoI的概率密度函数 (a)密度; (b)爆速

    Fig. 13.  Probability density function of QoI: (a) Density; (b) detonation velocity.

    图 14  密度和爆速的曲线拟合图

    Fig. 14.  Curve fitting between density and detonation velocity.

    图 15  爆压的概率密度函数

    Fig. 15.  PDF of detonation pressure.

  • [1]

    孙承纬, 卫玉章, 周之奎 2000 应用爆轰物理 (北京: 国防工业出版社)

    Sun C W, Wei Y Z, Zhou Z K 2000 Applied Detonation Physics (Beijing: National Defense Industry Press

    [2]

    Mader C 1979 Numerical Modeling of Detonations (Berkeley: University of California

    [3]

    梁霄, 王瑞利, 胡星志, 陈江涛 2023 爆炸与冲击 43 71Google Scholar

    Liang X, Wang R L, Hu Z X, Chen J T 2023 Explos. Shock. Waves. 43 71Google Scholar

    [4]

    梁霄, 王瑞利 2024 兵工学报 45 1673Google Scholar

    Liang X, Wang R L 2024 Acta. Arma. 45 1673Google Scholar

    [5]

    Liang X, Wang R L 2020 Int. J. Uncertainty. Quantif. 10 83Google Scholar

    [6]

    Bratton R N, Avramova M, Ivanov K 2014 Nucl. Eng. Technol. 46 313Google Scholar

    [7]

    Cartwright K, Pointon T, Oliver B V, Swanekamp S B, Hinshelwood D, Angus J R, Richardson A S, Mosher D 2016 Direct Electron-beam-injection Experiments for Validation of Air-chemistry Models (New Mexico: Sandia National Laboratories) SAND2016-2437C

    [8]

    Los Alamos National Laboratory 2022 Advanced Simulation and Computing Simulation Strategy Report LA-UR-22-25074

    [9]

    胡泽华, 叶涛, 刘雄国, 王佳 2017 物理学报 66 012801Google Scholar

    Hu Z H, Ye T, Liu X G, Wang J 2017 Acta. Phys. Sin. 66 012801Google Scholar

    [10]

    AIAA 1998 Guide for the Verification and Validation of Computational Fluid Dynamics Simulations (AIAA G-077-1998

    [11]

    Clark M A, Kearns K, Overholt J L, Gross K H, Barthelemy B, Reed C 2014 Air Force Research Laboratory Test and Evaluation, Verification and Validation of Autonomous Systems Challenge Exploration Final Report Case Number 88ABW-2014-4063

    [12]

    Hu X Z, Duan Y H, Wang R L, Liang X, Chen J T 2019 J. Verif. Valid. Uncert. 4 021006Google Scholar

    [13]

    张诗琪, 杨化通 2023 物理学报 72 110303Google Scholar

    Zhang S Q, Yang H T 2023 Acta. Phys. Sin. 72 110303Google Scholar

    [14]

    Wishart J, Como S, Forgione U, Weast J, Weston L, Smart A, Nicols G, Ramesh S 2020 SAE Int. J. CAV 3 267Google Scholar

    [15]

    Department of Energy’s NNSA 2005 Holistic, Hierarchical VVUQ as the Scientific Method for PSAAP Report LA-UR-23-32192

    [16]

    Department of Defense 2019 Modeling and Simulation (M&S) Verification, Validation, and Accreditation (VV&A) Recommended Practices Guide (RPG) Core Document: Introduction

    [17]

    Dahm W 2010 Technology Horizons a Vision for Air Force Science & Technology During 2010-2030 Report AF/ST-TR-10-01-PR

    [18]

    Balci O 1994 Ann. Oper. Res. 53 121Google Scholar

    [19]

    Metzger E J, Barton N P, Smedstad O M, Ruston B C, Wallcraft A J, Whitcomb T R, Ridout J A, Franklin D S, Zamudio L, Posey P G, Reynolds C A, Phelps M 2016 Verification and Validation of a Navy ESPC Hindcast with Loosely Coupled data Assimilation American Geophysical Union A41G-0130

    [20]

    American Society of Mechanical Engineers 2022 Verification, Validation, and Uncertainty Quantification Terminology in Computational Modeling and Simulation ASME VVUQ 1-2022

    [21]

    Oberkampf W, Roy C 2010 Verification and Validation in Scientific Computing (Cambridge: Cambridge University Press

    [22]

    Liang X, Wang R L 2019 Def. Technol. 15 398Google Scholar

    [23]

    王言金, 张树道, 李华, 周海兵 2016 物理学报 65 106401Google Scholar

    Wang Y J, Zhang S D, Li H, Zhou H B 2016 Acta. Phys. Sin. 65 106401Google Scholar

    [24]

    Park C, Nili S, Mathew J T, Ouellet F, Koneru R, Kim N, Balachandar S, Haftka R 2021 J. Verif. Valid. Uncert. 6 119007Google Scholar

    [25]

    梁霄, 王瑞利 2017 物理学报 66 116401Google Scholar

    Liang X, Wang R L 2017 Acta. Phys. Sin. 66 116401Google Scholar

    [26]

    Soize C, Ghanem R 2016 J. Comput. Phys. 321 242Google Scholar

    [27]

    Ghanem R, Soize C, Safta C, Huan X, Lacaze G, Oefelein J C, Najm H N 2019 J. Comput. Phys. 399 108930Google Scholar

    [28]

    Capiez-Lernout E, Ezvan O, Soize C 2024 J. Comput. Inf. Sci. Eng. 24 061006Google Scholar

    [29]

    Nespoulous J, Perrin G, Funfschilling C, Soize C 2024 Physics D 457 133977Google Scholar

    [30]

    Capiez-Lernout E, Soize C 2022 Int. J. Non. Linear. Mech. 143 104023Google Scholar

    [31]

    Metropolis N, Ulam S 1949 J. Am. Stat. Assoc. 44 335Google Scholar

    [32]

    Hastings W 1970 Biometrika 109 57Google Scholar

    [33]

    Geman S, Geman D 1984 IEEE Trans. Pattern. Anal. Mach. Intell. 6 721Google Scholar

    [34]

    Campbell A 1984 Pyrotechnics 9 183Google Scholar

    [35]

    Peterson P, Idar D 2005 Propell. Explos. Pyrot. 30 88Google Scholar

    [36]

    Davis W C, Hill L G 2002 12th International Symposium Detonation San Diego, USA, August 11–16, 2002 p220

    [37]

    Handley C, Lambourn B, Whitworth N, James H, Belfield W 2018 Appl. Phys. Rev. 5 011303Google Scholar

    [38]

    Coifman R, Lafon S, Lee A, Maggioni M, Nadler B, Warner F 2005 Proc. Natl. Acad. Sci. USA 102 7426Google Scholar

    [39]

    Hairer E, Lubich C, Wanner G 2002 Geometric Numerical Integration Structure-Preserving Algorithms for Ordinary Differential Equations (Heidelberg: Springer-Verlag

    [40]

    Soize C 2008 Int. J. Numer. Methods Eng. 76 1583Google Scholar

    [41]

    Shannon C 1948 Bell. Syst. Tech. J. 27 623Google Scholar

    [42]

    Gustavsen R, Sheffield S, Alcon R 2006 J. Appl. Phys. 99 114907Google Scholar

  • [1] 陈恒杰, 薛航, 李邵雄, 王镇. 一种通过约瑟夫森结非线性频率响应确定微波耗散的方法. 物理学报, 2019, 68(11): 118501. doi: 10.7498/aps.68.20190167
    [2] 李宁, 吕晓静, 翁春生. 基于光强与吸收率非线性同步拟合的吸收光谱测量方法. 物理学报, 2018, 67(5): 057801. doi: 10.7498/aps.67.20171905
    [3] 殷建伟, 潘昊, 吴子辉, 郝鹏程, 段卓平, 胡晓棉. 爆轰驱动Cu界面的Richtmyer-Meshkov扰动增长稳定性. 物理学报, 2017, 66(20): 204701. doi: 10.7498/aps.66.204701
    [4] 梁霄, 王瑞利. 爆轰流体力学模型敏感度分析与模型确认. 物理学报, 2017, 66(11): 116401. doi: 10.7498/aps.66.116401
    [5] 胡泽华, 叶涛, 刘雄国, 王佳. 抽样法与灵敏度法keff不确定度量化. 物理学报, 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [6] 王言金, 张树道, 李华, 周海兵. 炸药爆轰产物Jones-Wilkins-Lee状态方程不确定参数. 物理学报, 2016, 65(10): 106401. doi: 10.7498/aps.65.106401
    [7] 于明, 孙宇涛, 刘全. 爆轰波在炸药-金属界面上的折射分析. 物理学报, 2015, 64(11): 114702. doi: 10.7498/aps.64.114702
    [8] 刘军, 付峥, 冯其京, 王裴. 爆轰驱动金属飞层对碰凸起和微射流形成的数值模拟研究. 物理学报, 2015, 64(23): 234701. doi: 10.7498/aps.64.234701
    [9] 周洪强, 于明, 孙海权, 董贺飞, 张凤国. 炸药爆轰的连续介质本构模型和数值计算方法. 物理学报, 2014, 63(22): 224702. doi: 10.7498/aps.63.224702
    [10] 刘彧, 周进, 林志勇. 来流边界层效应下斜坡诱导的斜爆轰波. 物理学报, 2014, 63(20): 204701. doi: 10.7498/aps.63.204701
    [11] 曲艳东, 孔祥清, 李晓杰, 闫鸿浩. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响. 物理学报, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [12] 闫靓, 陈克安, Ruedi Stoop. 主观评价实验中声音样本剂量值的度量方法. 物理学报, 2013, 62(12): 124302. doi: 10.7498/aps.62.124302
    [13] 陈永涛, 任国武, 汤铁钢, 胡海波. 爆轰加载下金属样品的熔化破碎现象诊断. 物理学报, 2013, 62(11): 116202. doi: 10.7498/aps.62.116202
    [14] 赵艳红, 刘海风, 张其黎. 高温高压下爆轰产物中不同种分子间的相互作用. 物理学报, 2012, 61(23): 230509. doi: 10.7498/aps.61.230509
    [15] 赵艳红, 刘海风, 张弓木, 张广财. 高温高压下爆轰产物分子间相互作用的研究. 物理学报, 2011, 60(12): 123401. doi: 10.7498/aps.60.123401
    [16] 丁光涛. 一维变系数耗散系统Lagrange函数和Hamilton函数的新构造方法. 物理学报, 2011, 60(4): 044503. doi: 10.7498/aps.60.044503
    [17] 赵艳红, 刘海风, 张弓木. 基于统计物理的爆轰产物物态方程研究. 物理学报, 2007, 56(8): 4791-4797. doi: 10.7498/aps.56.4791
    [18] 文潮, 孙德玉, 李迅, 关锦清, 刘晓新, 林英睿, 唐仕英, 周刚, 林俊德, 金志浩. 炸药爆轰法制备纳米石墨粉及其在高压合成金刚石中的应用. 物理学报, 2004, 53(4): 1260-1264. doi: 10.7498/aps.53.1260
    [19] 文 潮, 金志浩, 李 迅, 孙德玉, 关锦清, 刘晓新, 林英睿, 唐仕英, 周 刚, 林俊德. 炸药爆轰制备纳米石墨粉储放氢性能实验研究. 物理学报, 2004, 53(7): 2384-2388. doi: 10.7498/aps.53.2384
    [20] 庄逢甘. 湍流耗散的研究. 物理学报, 1953, 9(3): 201-214. doi: 10.7498/aps.9.201
计量
  • 文章访问数:  310
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-26
  • 修回日期:  2025-04-07
  • 上网日期:  2025-04-24

/

返回文章
返回